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This book provides mathematics teachers with an introduction to elementary aspects
of functional equations. These equations are linked to function in various topics of
the senior secondary mathematics curriculum including transformations, identities,
difference equations and mathematical modelling. A computer algebra system has
been used to generate tables and graphs, as well as carrying out symbolic computation
for the illustrative examples.

Functional equations are equations that have functions as solutions. They have been
studied in some form or other since antiquity, and especially from the 19th century.
At this time, further consideration was given to the notion of function in general,
and in-depth analysis of functions, derivatives, integrals and their properties. The
contemporary study of functional equations in mathematics involves their widespread
use to model a broad range of practical and theoretical situations. Functional equations
provide a powerful and concise means of characterising the algebraic properties 
of functions, in particular identities, and the use of mathematical software for 
computation.
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I N T R O D U C T I O N

 

MathsWorks is a series of 

 

teacher

 

 texts covering various areas of study and
topics relevant to senior secondary mathematics courses. The series has been
specifically developed for teachers to cover helpful mathematical background,
and is written in an informal discussion style. 

The series consists of six titles: 
• An Introduction to Functional Equations
• Contemporary Calculus
• Matrices
• Data Analysis Applications
• Foundation Numeracy in Context
• Complex Numbers and Vectors
Each text includes historical and background material; discussion of key con-
cepts, skills and processes; commentary on teaching and learning approaches;
comprehensive illustrative examples with related tables, graphs and diagrams
throughout; references for each chapter (text and web-based); student activities
and sample solution notes; and a bibliography. 

The use of technology is incorporated as applicable in each text, and a gen-
eral curriculum link between chapters of each text and Australian state and ter-
ritory as well as and selected overseas courses is provided.

A Notes section has been provided at the end of the text for teachers to
include their own comments, annotations and observations. It could also be
used to record additional resources, references and websites.

 

060503•00 Functional Eqs 4pp  Page v  Friday, September 30, 2005  8:00 PM



 

vi

 

A B O U T  T H E  A U T H O R

 

David Leigh-Lancaster is an experienced mathematics educator who has been a
head of faculty and teacher of senior secondary mathematics for many years.
His mathematical interests and background are in the areas of mathematical
logic, computability theory and the history, foundations, and philosophy of
mathematics. He has worked extensively in curriculum development and
assessment, resource and teacher professional development and mathematics
education research. He has a particular interest in the use of technology in
mathematics teaching and learning.

 

060503•00 Functional Eqs 4pp  Page vi  Friday, September 30, 2005  8:00 PM



 

1

 

C H A P T E R  

 

1

 

E Q U A T I O N S ,  F U N C T I O N S  A N D  
A L G E B R A

 

There are lots of different kinds of equations, so what are 

 

functional

 

 
equations? Senior secondary mathematics students and their teachers would be 
familiar with various situations that involve equations and functions, such as 
solving an equation of the form 

 

f

 

(

 

x

 

) = 0 to find the horizontal axis intercepts of 
the corresponding graph, or solving an equation of the form 

 

f

 

(

 

x

 

) = 

 

g

 

(

 

x

 

) to find 
the coordinates of the points of intersection of the graphs of the two functions, 
and then possibly to determine the area between the two curves. 

For example, if 

 

f

 

: 

 

R

 

 

 

→

 

 

 

R

 

, 

 

f

 

(

 

x

 

) = 

 

x

 

4

 

 and 

 

g

 

: 

 

R

 

 

 

→

 

 

 

R

 

, 

 

g

 

(

 

x

 

) = 

 

x

 

2

 

, then the graphs 
of the two functions, as shown in Figure 1.1, intersect when 

 

f

 

(

 

x

 

) = 

 

g

 

(

 

x

 

), that is 
when 

 

x

 

4

 

 = 

 

x

 

2

 

, or alternatively, when 

 

f

 

(

 

x

 

) – 

 

g

 

(

 

x

 

) = 0, that is 

 

x

 

4 

 

– 

 

x

 

2

 

 = 0. The roots 
of this equation are readily determined as {

 

x

 

: 

 

x

 

 = –1, 

 

x

 

 = 0, 

 

x

 

 = 1}. The solutions 
to these sorts of equations are sets of real numbers, possibly even the 

 

empty set

 

 
when the equation has 

 

no solution

 

.

 

Figure 1.1:

 

 Graphs of 

 

f

 

 and 

 

g

f[x_]: = x g[x_]: = x4 2

Plot f x g x x[{ [ ], [ ]},{ ,,-3, 3}, AxesLabel {x, y}, PlotRange {→ → --1, 6}]
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The area between the graphs of the two functions and their points of 
intersection, as shown in Figure 1.2, can be found by evaluating a suitable 
definite integral. From the graphs in Figure 1.1 it can be seen that both graphs 
are symmetrical about the 

 

y

 

-axis and that 

 

g

 

(

 

x

 

) 

 

≥

 

 

 

f

 

(

 

x

 

) on the interval [–1, 1].

Thus, the required area can be obtained by evaluating the definite integral:

Both of the functions 

 

f

 

 and 

 

g

 

 are many-to-one functions, and therefore do 
not have inverse functions. If their domains are restricted to the interval [0, 

 

∞

 

), 
they become one-to-one functions. To find the functions 

 

f 

 

–1 

 

and 

 

g 

 

–1

 

 such that:

 

f 

 

–1

 

(

 

f

 

(

 

x

 

)) = 

 

x

 

 = 

 

f 

 

(

 

f 

 

–1

 

(

 

x

 

)) and

 

g

 

–1

 

(

 

g

 

(

 

x

 

)) = 

 

x

 

 = 

 

g 

 

(

 

g 

 

–1

 

(

 

x

 

))

respectively, is to seek in each case a 

 

function

 

 which is a solution of an 
equation. These two equations are thus simple 

 

functional

 

 equations. They also 
happen to characterise a particular 

 

symmetry

 

 property, reflection symmetry in 
the line 

 

y

 

 = 

 

x

 

, as shown for the graph of 

 

g

 

 in Figure 1.3.

 

Figure 1.2:

 

 Graphs of 

 

f

 

 and 

 

g

 

 and area between two curves and their points of intersection
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Functional equations are 

 

equations

 

, whose variables and 

 

solutions

 

 are 

 

functions

 

 rather than numbers. Like most straightforward descriptions, this 
raises several other related questions: 
• Why are 

 

functional

 

 equations of interest? 
• What are the sorts of mathematical 

 

problems

 

 and 

 

techniques

 

 associated with 
functional equations?

• How can the study of functional equations be related to the senior secondary 
mathematics curriculum?
This resource is designed to provide an introductory response, at least in 

part, to each of these questions. The contemporary study of functional 
equations and their applications to mathematical modelling in the life sciences, 
natural sciences, economics and business proceeds from the mid 1960s, 
following the earlier development of a more comprehensive understanding of 
the concept and theory of functions, and computation and function in the 19th 
century and early 20th century. 

Functional equations underpin the study of several key aspects of the 
mathematics curriculum, yet their role in this is rarely made explicit, partly 
because it is often subsumed within various well-known ‘topics’ and partly 
because it requires consideration of functions themselves as ‘objects’ for 
investigation. That is, for teachers and students to consider function as a reified 
construct in its own right (from the Latin re for thing). To facilitate such 
mathematical inquiry, and consideration of its application to mathematics 
curriculum, it is helpful to look at some key background ideas such as equality, 

Figure 1.3: Graphs of restricted function g, the line y = x and g –1
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equation, function and graphs, algebra and computation. That is the purpose of 
this chapter. 

The study of functions has been much aided by the development of 
mathematically able mechanical technologies in the 19th century (for example, 
the work of Charles Babbage) and up to the 1930s, and the subsequent 
development of first electro-mechanical (1937) and then electronic 
technologies from 1947 to the modern digital computer. 

These now support readily available software such as spreadsheets, graphics 
calculators and computer algebra systems (CAS) that enable functions to be 
defined as objects, which are then manipulated, used in equations and systems 
of equations, transformed, and the like. CAS in particular support natural links 
between numerical, graphical and symbolic representation and computation. 

For example, if the function h is defined in terms of f and g by h: R → R, 
h(x) = f(x) – g(x) = x4 – x2, then its rate of change or derivative function can be 
represented graphically as shown in Figure 1.4.

Using CAS, the derivative at a point can be evaluated numerically, for 
example at x = 1:

or it can be evaluated from first principles if so desired:

Figure 1.4: Graph of h′ the derivative function of h

Plot [h' [x], {x, - 2}, AxesLabel  {x, "h'[→ xx]"}] :
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or determined symbolically using the application of the CAS routine for 
symbolic differentiation:

There are different hand-held and computer-based platforms for such 
technologies, and CAS are indispensable tools for the thorough investigation of 
functions and related topics in mathematics. Although the material in this 
resource has been developed using the CAS Mathematica, such use is not 
intended as an instructional course in the use of this particular CAS. Rather, it is 
intended to illustrate various aspects of working mathematically with functions, 
their graphs and related equations with the assistance of such technology. 

Important CAS functionality such as Plot, Solve, Differentiate 
and the like is typically generic in form across different implementations, and 
in each case designed to closely model standard mathematical forms and 
conventions. Thus, while there are minor variations between different CAS, 
teachers and students will be able to fairly readily identify the underpinning 
computational constructs and related functionality. Indeed, there is increasing 
convergence between hand-held, palmtop–laptop and desktop platforms for all 
kinds of technology and software functionality. Recent developments in 
graphics calculators technology (2000–2005) with memory capacities of several 
megabytes and an increasingly sophisticated range of quasi-CAS 
supplementary programs also see convergence in functionality from this 
technology as well.

E Q U A L S  A N D  E Q U A L I T Y

Students meet, and become familiar with, the notion of equality from early on 
in their study of mathematics, although they may not initially be explicitly 
aware of this. Along with numbers and arithmetic operations, the ‘=’ symbol 
and the corresponding word ‘equals’ is one of the early mathematical symbols 
that students learn to recognise and apply, although it was not introduced into 
mathematics until 1557 through the work of Roberte Recorde in his 
Whetstone of Witte. Alternative representation such as ae, (from the Latin 
aequalis or equal) and || were still in common use in the 1700s.

From the early years of schooling, students move from informal 
conceptions and uses of the notion of ‘equals’ through to formal 
representations and related numerical, logical and algebraic techniques as they 
progress through the compulsory years, and subsequently senior secondary 
years, of school mathematics education. 

h'[ ]1

2
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The expression equals enters mathematical language at an early stage in 
schooling, where the notion of equality is usually expressed initially in terms 
of the verb to be. For example, the sense of ‘number’ is related to ‘equal groups’ 
of objects, connected by the notion of a one-to-one correspondence between 
sets of the ‘same size’—which is itself a function (see Skemp 1989, for a 
detailed discussion of the early stages of student mathematics learning). 

Early student arithmetic statements are usually expressed verbally, or in 
written form in natural language, using forms such as ‘one and one is two’ or 
‘three fours are twelve’. These are convenient and commonly used 
abbreviations for ‘one and one is equal to two’ and ‘three fours are equal to 
twelve’ respectively, or, in symbolic form ‘1 + 1 = 2’ and ‘3 × 4 = 12’. However, 
this informality can disguise the fact that the mathematical expression is quite 
precise in its meaning compared with the verb ‘to be’ which can be used in 
several ways. For example, the statement ‘Tessa is a girl’ is not intended to 
identify the object ‘girl’ with another object ‘Tessa’ but rather to indicate that 
Tessa is a member (or element) of the set of girls. Here the role of the verb ‘is’ 
is as an existential quantifier—it asserts the existence of an element (Tessa) of 
a set (girls). Mathematically, this can be expressed as Tessa ∈ G, where G is the 
set of all girls, and the symbol ∈ (is an element of) designates the set relation 
of membership.

The notion of number is both subtle and abstract, and, from one 
perspective, may be thought of as denoting the size of a set. The symbol ‘12’ is 
a numerical designation, or numeral, for a certain number in the Hindu-
Arithmetic numeration system, just as the symbol ‘XII’ is the corresponding 
designation in the Roman numeration system. While the numerical 
designation of a number can change from one language to another, 
the mathematical properties of the number do not. Thus, regardless of the 
language and particular symbols used in mathematics the result of the 
standard computation: ‘three multiplied by four’ is always equal to ‘twelve’. 

On the other hand, there are infinitely many possible computations that 
yield ‘twelve’ as a result. For example, while ‘3 × 4 = 12’ it is also the case that 
‘2 × 6 = 12’; ‘6 + 6 = 12’; ‘3 + 9 = 12’ and ‘14 – 2 = 12’ … and so on. The part of 
the expression on the left of the ‘=’ symbol is different in each case, but the 
part of the expression on the right of the ‘=’ symbol is the same in each case. 
Thus, the result of each of these computations is the same number. In 
mathematics ‘=’ is a special type of relation called an equivalence relation. The 
relation of equality may have different interpretations, for example, between 
sets its is usually taken to mean that two sets are equal if, and only if, they 
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have exactly the same elements; while in geometry equality can be interpreted 
in terms of congruency of shapes. 

To say that equality is an equivalence relation means that if x, y and z are 
arbitrary elements of some set S on which this relation is defined (such as the 
set of natural numbers, N = {0, 1, 2, …}, for which the relation ‘=’ has its usual 
interpretation) then:
• x = x reflexivity
• x = y implies y = x symmetry
• x = y and y = z implies x = z transitivity

The symbols x, y and z that represent arbitrary elements of the set S are 
called variables. They may take any value in S, and although they are usually 
distinct elements they do not need to be, thus cases where some or all of x, y, z 
are the same element are automatically included. 

These properties may seem fairly evident and this is the case where it is true 
that a particular relation happen to be an equivalence relation on a given set. 
However, this is usually the point in question, as there are many different 
relations that can be defined on a given set, some of which happen to be 
equivalence relations, while others are not.

 For example, a familiar relation which is not an equivalence relation on the 
set of natural numbers is the relation ‘less than’ or ‘<’. This simplest way to 
show this is to give a counter-example to at least one of the defining conditions 
for an equivalence relation:
• x < x is false for x ∈ N: for example, 5 is not less than 5
• x < y does not imply y < x for x, y ∈ N: for example, 3 < 4 does not imply 

4 < 3
however:
• x < y and y < z implies x < z is true for x, y, z ∈ N
Thus ‘<’ is not an equivalence relation, since the first two conditions do not 
hold, although the third condition does. 

This illustrates an important principle in mathematical reasoning—it is 
sufficient to exhibit a single counter-example to a statement to show that it is 
not true, or, in other words, is false. To show that something is true in general 
usually requires some form of reasoning using a free (arbitrary) variable, such 
as is commonly used in algebraic proofs. In work with functions this typically 
involves some form of analytical reasoning.

For natural numbers, N, the relation x < y can be defined in terms of the 
relation ‘=’ by the logical statement that asserts the existence of a unique non-
zero natural k such that x + k = y. Thus, 6 < 10 since there exists a non-zero 
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natural number, 4, where 6 + 4 = 10. However, it is not the case that 6 < 3, since 
there is no natural number k such that 6 + k = 3. 

Students also progressively become familiar with other properties of ‘=’ 
during their study of mathematics, in particular where computation with 
number is involved directly, but also with respect to certain so called ‘algebraic 
properties’ or ‘principles of algebraic manipulation’. For example, if x and y are 
natural numbers such that x = y, then for any natural number z, the following 
are also true:
• x + z = y + z
• x × z = y × z
Again, these may seem evident; however, they include specific cases such as:
• (3 × 4) + 5 = (2 × 6) + 5 
• (3 + 9) × 4 = (14 – 2) × 4 
as well many other substitution instances where the initial equality holds. This 
may not be immediately apparent unless such examples are considered 
explicitly. A detailed and accessible discussion on the structure of number can 
be found in Stillwell (1999).

In senior secondary mathematics, students who undertake courses based on 
the study of function, algebra, coordinate geometry and calculus often begin 
these by some study of polynomial functions of a single real variable. This is 
typically developed as a natural extension of earlier study involving linear and 
quadratic polynomial functions. Thus, a general polynomial function, p, of 
degree n, is defined as

p: R → R , p(x) = anxn + an – 1 x n – 1 + an – 2 x
n – 2 + … + a2 x

2 + a1 x
1 + a0x

0.

 If q is another polynomial function, also of degree n, 

q: R → R, q(x) = bnxn + bn – 1 x
n – 1 + bn – 2 x

n – 2 + … + b2 x
2 + b1 x

1 + b0x
0,

then p = q if, and only if, all the corresponding coefficients are equal, that is:

an = bn, an – 1 = bn – 1, …, a2 = b2, a1 = b1 and a0 = b0. 

Many students regard this as an ‘obvious’ statement, but do not necessarily 
connect it to the process for re-expression of a polynomial expression p(x) with 
respect to a given linear term (x – a) as p(x) = (x – a) q(x) + r, where in the case 
of a cubic polynomial function, q(x) is a quadratic polynomial function and r is 
a real number. Yet understanding of the equivalence of these forms through 
this re-expression underpins the remainder and factor theorems for 
polynomial functions. In most cases that students deal with, the coefficients ai 
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and bi are integers, and the re-expression process can be carried out more or 
less readily by application of the long division algorithm from arithmetic, or 
directly by equating coefficients. 

For example, if p(x) = x3 + 2x2 – 3x + 1 and the linear term is (x – 2) then, 
equating coefficients from one term to the next, and ensuring that the 
coefficients match up with those of the original expression gives:

p(x) = x2 (x – 2) + …(x – 2) + …(x – 2) + … (to get the x3 term)

= x2 (x – 2) + 4x(x – 2) + …(x – 2) + … (to balance –2x2 and get +2x2)

= x2 (x – 2) + 4x(x – 2) + 5(x – 2) + … (to balance –8x and get –3x)

= x2 (x – 2) + 4x(x – 2) + 5(x – 2) + 11 (to balance –10 and get +1)

= (x – 2)(x2 + 4x + 5) + 11  (collecting x – 2 terms)

Similarly, if the linear term is (x + 1), the same process can be carried out 
again, written in this instance more concisely in two lines of working , one for 
the re-expression and one for collecting x + 1 terms. 
This gives 
p(x) = (x – a) q(x) + r as:

p(x) = x2 (x + 1) + x(x + 1) – 4(x + 1) + 5

= (x + 1)(x2 + x – 4) + 5

Many students do not realise that the ‘choice’ of the linear term is 
completely arbitrary, the procedure is algorithmic and can be carried out just 
as well for (x + 3 ) or (x – 4), or any other selection for this term: 

p(x) = x2 (x + 3) – x(x + 3) + 0(x + 3) + 1

= (x + 3)(x2 – x) + 1

p(x) = x2 (x – 4) + 6x(x – 4) + 21(x – 4) + 85

= (x – 4)(x2 + 6x + 21) + 85

The equality of polynomial functions is an equivalence relationship, so any 
one of these forms p(x) = (x – a) q(x) + r for the rule of the cubic polynomial 
function p is equal to any other of the forms p(x) = (x – a) q(x) + r irrespective 
of the value of a. 

A consequence of this is that for any particular value of the variable x, the 
value of p(x) will be the same. In each re-expression form of this rule it can 
readily be verified that p(0) = 1 and that p(2) = 11. Table 1.1 shows the 
equivalence the first three forms for integer values of x from –5 to 5.
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However, the general reasoning for the equivalence of these expressions 
over the natural domain of the function, R, requires algebraic manipulation 
within the relevant mathematical structure, the ring of polynomials.

Functions are a special type of set that can be represented using ordered 
pairs, rules and graphs. Two sets are equal if and only if they are comprised of 
exactly the same elements. In general, two functions, f and g, are said to be 
equal if and only if: 

• they have the same domain, that is, df = dg ; and

• f(x) = g(x) for all x in df = dg.

Another way of saying this is that {(x, f(x)), x ∈ df} = {(x, g(x)), x ∈ dg}, that is, 
the sets of ordered pairs that represent the two functions are equal. Hence the 
graphs of the two functions will also be identical (coincide) if the two functions 
are equal. Thus the functions

f: R → R, f(x) = x2 – 2x – 5 and g: R → R, g(x) = (x – 1)2 – 6

are equal and have the same graph over a given interval, as illustrated in 
Figures 1.5a and 1.5b:

Table 1.1: Equivalence of forms of p(x) for integer values of x from –5 to 5 

p1[x_]: = x
3 + 2x2 – 3x + 1

p2[x_]: = (x – 2)(x
2 + 4x + 5) + 11

p3[x_]: = (x + 1)(x
2 + x - 4) + 5

Table[{x, p1[x_], p2[x_], p3[x_]}, {x, –5, 5}]

–5 –59 –59 –59

–4 –19 –19 –19

–3 1 1 1

–2 7 7 7

–1 5 5 5

0 1 1 1

2 11 11 11

3 37 37 37

4 85 85 85

5 161 161 161
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That is, in this case, the set of ordered pairs {(x, y): x ∈ R and y = f(x)} is the 
same as (is equal to) the set of ordered pairs {(x, y): x ∈ R and y = g(x)}.

However, if f remains the same and the function g is redefined so that: 

f: R → R, f(x) = x2 – 2x – 5 and g: Z → R, g(x) = x2 – 2x − 5

then f ≠ g , since while they have the same rule they do not have the same 
domain. The graph of f is a continuous curve and the graph of g is a set of 
discrete points, as shown in Figure 1.6:

Figure 1.5a: Graph of f: R → R, f(x) = x2 – 2x – 5

Figure 1.5b: Graph of g: R → R, g(x) = (x – 1)2 – 6
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In this case, the set of ordered pairs that specifies the function g is an infinite 
and discrete proper subset of the set of ordered pairs that specifies the function 
f. That is:

{(x, y): x ∈ Z and y = g(x)} ⊂ {(x, y): x ∈ R and y = f(x)}

Similarly, if f remains the same and the function g is redefined so that: 

f: R → R, f(x) = x2 – 2x − 5 and g: R → R, g(x) = (x – 1)2 + 4

then f ≠ g , since while they have the same domain they do not have the same 
range. For example, (1, –6) ∈ f whereas (1, 4) ∈ g. The graphs of the these two 
functions do not coincide, as shown in Figure 1.7:

If two functions f and g are specified by domain and rule, and have the same 
domain, then they will be equal if the difference between f(x) and g(x) is 

Figure 1.6: Graph of g: Z → R, g(x) = x2 – 2x − 5 = (x – 1)2 – 6

Figure 1.7: Graph of f: R → R, f(x) = x2 – 2x – 5 and g: R → R, g(x) = (x – 1)2 + 4
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always zero on their common domain, that is f(x) – g(x) = 0. CAS may be of 
assistance in determining whether this is the case or not, especially where the 
form of the rules for f and/or g is complicated. In simpler cases this can be 
determined by hand. For example, if :

f: R → R, f(x) = 4x – 7 and g: R → R, g(x) = 2(2x – 3) +1, 

then

f(x) – g(x) = 4x – 7 – (2(2x – 3) +1) = 4x – 7 – 4x + 6 – 1 = –2 ≠ 0, and so f ≠ g.

However, if:

g: R → R, f(x) = 2(2x – 4) +1 

then

f(x) – g(x) = 4x – 7 – (2(2x – 4) +1) = 4x – 7 – 4x + 8 – 1 = 0, and so f = g.

E Q U A T I O N S

A simple description of an ‘equation’ might be any ‘well-defined’ mathematical 
expression that contains the symbol ‘=’, or a natural language equivalent in 
words. Early work on equations by students involves what are sometimes 
called quasi-variables (see Stephens 2004). These are informal versions of 
variables, and may not be denoted by a symbol or other term, but can be kept 
in mind as signifying a sense of arbitrary designation. 

Students are often asked to identify numbers that make certain 
mathematical (arithmetic) statements true. At first this typically involves 
situations where only one value exists such as ‘fill the space ‘…’ with the 
missing number that makes the number sentence ‘4 + … = 12’ true, and often 
occurs in contexts where the operation of subtraction is being considered. 
Indeed, later on in a student’s mathematical studies, the insufficiency of the 
natural numbers to provide truth values for similar looking statements such as 
‘ 9 + … = 5’ is used as a motivation for the introduction of the set of integers, 
Z = { … –3, –2, –1, 0, 1, 2, 3 …}. Sometimes ‘small print’ geometric shapes and 
symbols such as ♣ or ‘empty’ shapes such as triangles and squares are used to 
stand for the ‘missing number’, although this can introduce ambiguities of its 
own. 

For example, does ‘■’ in the expression ‘ 9 + ■ = 5’ stand for a box that is 
intended to be ‘filled in’ with the number –4, such as: 

9 + –4  = 5
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or is it intended as a symbol for a quasi-variable where ■ is itself taken to be 
–4, that is, ■ = –4?

Where such forms are used, care will need to be taken to ensure that students 
understand in what sense the use of a given symbol is intended, and in which 
context. Perhaps it is for this reason that literal symbols offer some advantage, 
although they have their own complications, being variously used to represent: 
constants; undetermined coefficients (but which are actually implicitly 
understood to have specific values); and variables, or the value(s) of a variable or 
variables that satisfy the conditions of equations and/or other conditions. 

Thus, students should be aware that while an equation over the domain of 
natural numbers, N, such as a + 7 = 10 has a unique solution a = 3, the 
equation a + b = 10 has a finite set of multiple solutions over the same domain, 
including a = b = 5 as well as a = 8 and b = 2; and has an infinite set of solutions 
of the form a, b = 10 – a, including, for example, a = 16 and b = 10 – 16 = –6 
over the domain of integers, Z. 

As students progress to include consideration of many-to-one functions in 
their studies, such as quadratic functions, other polynomial functions of higher 
degree and circular functions, they further develop their understanding of the 
idea that, for some functions, an equation of the form f(x) = a has multiple 
truth values over the domain of the function, or a given subset of this domain.

 Indeed, in the case of circular functions, there may be no solutions, for 
example, 2sin(3x) = 5, as shown in Figure 1.8, 

or there may be finitely many solutions, as shown in Figure 1.9 for the 
equation 2sin(3x) = 1 over the interval [–2π, 2π ]:

Figure 1.8: Part of the graphs of f(x) = 2sin(3x) and y = 5
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In other cases there may be infinitely many solutions over the natural 
domain of the function. This can only be indicated graphically, by 
consideration of the infinite extensibility of the graphs of y = 1 and 
f(x) = 2sin(3x) over R, and the periodic nature of the graph of f(x) = 2sin(3x) as 
observed for several cycles, as illustrated in Figure 1.10:

Sometimes equations involving functions can be solved analytically using 
algebraic techniques; in other cases graphical or numerical techniques need to 
be employed to find approximate solutions to a required accuracy, over a given 
interval. When a many-to-one function is involved, a principal domain 
solution for a one-to-one subset of the natural domain is often used, and 
multiple solutions over the larger domain generated from this value. 

Figure 1.9: Graphs of f(x) = 2sin(3x) and y = 1 over the interval [–2π, 2π]

Figure 1.10: Graphs of f(x) = 2sin(3x) and y = 1 for several periods of f
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F U N C T I O N ,  A L G E B R A  A N D  C O M P U T A T I O N

Functions are part of the lifeblood of mathematics, link to both computation 
and algebra, and involve the notion of equality in both contexts. In work on 
coordinate geometry and calculus, functions are often described in terms of 
some sort of rule that assigns (maps) elements of one set, X, to elements of 
another set, Y, with the defining property that each element in the set X is 
assigned (mapped) to exactly one element in the set Y. 

If x and y are selected as variables to represent elements of X and Y 
respectively, then for a function, f, from X to Y, the mapping can be denoted by: 
x → y, x → f(x) or y = f(x). In this case x is called the independent variable and 
y is called the dependent variable. A function can be defined simply as a set of 
ordered pairs in which no ordered pair in the set has the same first element as 
any other ordered pair in the set. If a rule of the form y = f(x) is available to 
describe the mapping, then the function f can be defined by 
f = {(x, y): y = f(x) and x ∈ X}. 

What is commonly called ‘the graph’ of a function is its (usually partial) 
representation by points on a cartesian coordinate system (two axes at 
perpendicular to each other through a fixed reference point called the origin) 
where each ordered pair corresponds to the coordinates of a point. The axes do 
not need to be perpendicular, although most work on graphs in schools follows 
on from the work of Descartes in the 17th century and mainly uses the 
cartesian coordinate system. For example, two parallel lines could be used to 
form what is called an arrow (mapping) diagram, as illustrated in Figure 1.11 
for the function g: R → R, g(x) = x2:

In general, for a function, f, from X to Y the set X is called the domain of f, 
written dom(f ) or df, and the set Y is called the co-domain of f. Actually, many 
‘graphs’ of functions, such as those shown earlier, are only plots of a subset of 
the function, but it is conventional practice to accept that, with experience, 
these subsets are in most cases sufficient to provide an adequate visual 
illustration of the ‘behaviour’ of the function. It may or may not be the case 

Figure 1.11: Part of an arrow (mapping) diagram for the function g: R → R, g(x) = x2
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that every y in Y has an x from X assigned to it; the set of f(x) values resulting 
from the application of f(x) to all x in X is called the range of f, written ran(f ) 
or rf, and is a subset of Y, that is, rf ⊆ Y. 

In mathematical work involving functions and algebra, the mathematical 
relation of equality is used with several different meanings in different 
contexts, which frequently leads (in different ways) to challenges for students 
and teachers alike. The formal definition of ‘=’ as an equivalence relation with 
certain properties that require interpretation with respect to the mathematical 
structure within which it is being used is part of the theory of mathematical 
logic (see Crossley 1972). This is a field of mathematics that evolved rapidly in 
the first half of the 20th century following problems and controversy in set 
theory and the foundations of mathematics (see Chaitin 2000). A closely 
related field of mathematics is that of computability theory, which draws 
strongly on mathematical logic and can be applied in any domain of 
mathematics where algorithms or heuristics are used, or sought, to solve 
particular classes of problems. These may include, for example, calculation of 
values of functions, the solution of equations, geometric constructions, or 
carrying out various computations. Practical computation using technology 
has required mathematicians to distinguish carefully between multiple uses of 
the symbol ‘=’ for different purposes.

 For example, the mathematical statement f: R → R, f(x) = ax + b, where a 
and b are real constants, defines a family or class of functions of a given type, 
that is, linear functions of a single real variable. The particular function that is 
a member of this family, with rule f(x) = 2x + 3, is specified by assigning the 
value 2 to a and the value 3 to b, typically written as a = 2 and b = 3. 

There are two distinct uses of ‘=’ involved here. The first use of ‘=’ is to 
define a relationship that holds between variables over a given set, the domain 
of the function, that is over arbitrary values of the domain. The second use of 
‘=’ is to assign a fixed value to the parameter a (defining it as a constant). If an 
equation such as f(x) = 10 is given, and solved for the variable x, then the 
particular values(s) of the variable that make the statement true are sought—
which is a different use of the symbol ‘=’ again. 

Mathematically able software, such as computer algebra systems (CAS), 
distinguish between these uses of ‘=’, sometimes explicitly using different 
symbols, sometimes by using the context of variable, formula or constant 
entry, or other devices. 

Thus, while an expression such as a = 2, or a → 2, is commonly used to 
assign a value to a constant, the symbol := is often used in programming 
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languages to define the rule of a function, for example f(x):= 2x + 3. Some CAS 
such as Mathematica, which are used as programming languages as well as 
computational tools, distinguish explicitly between all three senses of ‘=’, 
while others use devices such as special memory register designations. The 
following examples show how the CAS Mathematica assigns values to a 
constant, which can then be used in subsequent computations, how equations 
can be formulated and solved, and how a function can be defined and used to 
produce, tables and graphs.

C O N S T A N T S

Consider assigning the value 2 to the symbol a, that is a = 2, then various 
computations involving a will be performed with a acting as the constant value 
2. For example, in the following bold courier new font expressions 
indicate Mathematica input, while normal courier new font 
expressions indicate Mathematica output:

The assigned value of a will be retained unless it is explicitly cleared, then a 
returns to being an undetermined (free) symbol.

Note that if the assigned value of a had been retained, the last computation 
would have the output 32. 

This is a particularly important practical consideration for the use of 
graphics calculator or CAS technology. Literal symbols such as a, b, c are 
frequently used to represent coefficients, constants and the like; symbols such 
as f, g, h are used to represent functions, and symbols such as x, y, z to 
represent variables. At certain stages of working mathematically in a given 

a

a a a

a

=

+ +

+

2

12

2

6

5

Clear a

a

a a a a a

[ ]

a

a5
× × × ×
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context, it may well be that some or all of these are assigned specific values or 
definitions—in general, they will retain these unless they are cleared or 
redefined. Thus, if a is assigned the value 7, it cannot be used as an 
undetermined coefficient in later working unless its previous value has been 
cleared. It is important that students are asked to work through a selection of 
judiciously chosen examples to highlight the difference between a variable and 
a constant, which may or may not be assigned a specific value at a given time.

A L G E B R A  A N D  E Q U A T I O N S  

When the solution of a particular equation is required, for example, finding the 
real values of x for which 2x2 – 3x – 7 = 0, it is not intended, as is the case with 
a constant, to assert that the algebraic expression 2x2 – 3x – 7 is to be regarded 
as a ‘shorthand’ for 0, but rather to find the particular values of x for which 
2x2 – 3x – 7, when evaluated, will give the result 0. For the CAS Mathematica, 
a special symbol ‘ = =’ is used to make this distinction:

Here the solution set is specified in terms of replacement values, which are 
interpreted as follows: if x is replaced by  or if x is replaced by 

 then evaluation of 2x2 – 3x – 7 will result in 0. The corresponding 
general solution for a quadratic equation with real coefficients and specification 
of any restrictions on defining parameters can be obtained by:

where && designates the logical connective ‘and’ and | | designates the logical 
connective ‘or’. Thus, the Mathematica functionality for Reduce provides all 
possible combinations of values for constants and variables that would lead to 
the stated equation being satisfied.

For the CAS Mathematica, the symbol = = can be used to test the truth of 
propositions directly:

Solve x x x[ , ]2 3 7 02 − −

→ →

==

{{x
1

4
(3 - 65)},{x

1

4
(3 + 665)}}

1
4
--- 3 65–( )

1
4
--- 3 65+( )

Reduce ==[ , ]ax bx c x2 0+ +

≠x ==
-b - b - 4ac

2a
& & a 0 ||

2

xx ==
-b + b - 4ac

2a

a == 0 & & b == 0 & & c == 0 || a = 0 & & x

2

=== -
c

b
& & b 0≠
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However, testing whether the value x = 3 satisfies 2x2 – 3x – 7 = 0 yields

hence, x = 3 is not a solution of this equation. In fact, 2 × 32 – 3 × 3 – 7 = 2, as 
can be seen by direct evaluation:

However, when a root of the equation is used:

F U N C T I O N S

As noted earlier, an important aspect of using technology is to remember in a 
given context what values have been progressively assigned (or cleared and 
reassigned) to various constants such as a, b, c … rules defined (or cleared and 
redefined) for functions such as f(x), g(x) … and the like. A common error is to 
assign a constant value to the letter a, for example, and then proceed with 
analysis where a is intended to be an undetermined parameter in the rule of a 
function. In other cases, the ‘=’ symbol may be used to define special 
relationships within one context, for example a = b + c, which are then not 
cleared for work in another context. 

Different technologies, including CAS, have various ways of dealing with 
these issues, and the technology user needs to be familiar with these and apply 
the appropriate protocols for that technology to ensure that the analysis they 
think they are conducting is, in fact, what they intend. For example, if the rule 
of a linear function is defined by:

Then a and b are undetermined coefficients:

5 + 2 == 6 + 1

True

2 3 ==2× − × −3 3 7 0

False

2 2x x x− − →3 7 3/.

2

Simplify [2x – 3x – 7 /.x2 1
4

→ ( – )]3 65

0

f[x_]:= ax + b

Solve[f[x] == c, x]

{{x
b - c

a
}}→ −
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If, however a and b are assigned particular values:

then these will be used in future computations:

And, if not cleared, will still be in use, and may lead to unexpected results:

One of the first mathematical functions that students meet is the ‘counting 
on’ or successor function, s, on the set of natural numbers, N, and is central to 
the axiomatic model for the natural numbers developed by Peano in 1889 and 
links these to set theory (see Enderton 1977 for a detailed discussion on how 
number can be developed from notions of set and function). This function has 
the rule s(n) = n + 1, and its application in N can be summarised 
diagrammatically as: 0 → 1 → 2 → 3 → … In fact the set of natural numbers, 
N, is generated by the repeated applications of the successor function to the 
initial element 0:

0
s(0) = 1
s(s(0)) = s(1) = 2
s(s(s(0))) = s(2) = 3 
.
.
.

Arithmetic operations are also examples of functions that students meet 
early on; indeed, it is the efficient and reliable evaluation of these functions 
that is held in high esteem in numeracy work:
• the sum function (m, n) → m + n or +(m, n) = m + n
• the product function (m, n) → m × n or ×(m, n) = m × n

Of course, in practice these functions are computed for arbitrary natural 
number and then integer values using the mental counting, addition and 
multiplication facts (tables) and written algorithms (including the combined 
application of place value and the distributive property for multiplication over 

{a = 2, b = 3}

f[4]

11

Expand[(a + b)(a - b)]

Clear[a,b]

Expand[(a + b)

-5

(a - b)]

a - b2 2
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addition) that students spend much of their early years of mathematics 
education becoming familiar with.

As students develop their knowledge of arithmetic operations, these are 
then used in various combinations to define and apply rules for more 
complicated functions. Students often initially meet such functions through 
the concept of a ‘function machine’ such as the following, for 
x → 2x + 3, or f(x) = 2x + 3, as shown in Figures 1.12a and 1.12b:

which, after some familiarisation, is then often presented in the condensed 
form below, where the particular computation for x = 3 is shown:

with an emphasis on the fact that for each ‘input’ (3 in this case) there is only 
one ‘output’ (10 in this case). 

Students subsequently move in the later years of secondary schooling to 
the notion of function as a reified construct, that is, as a ‘thing’ which can itself 
be considered as an object of further manipulation and analysis. Then functions 
can themselves be transformed, inverse functions found (if the original 
function is a one-to-one function), combined in various ways through 
arithmetic operations and composition, differentiated and integrated. In short, 
the notion of a function as something which acts on other things, such as 
numbers, is extended to the notion of a function as something which can be 
acted on itself. 

Thus, for the linear function f(x) = 2x + 3, with domain R, the inverse 

function f –1 , with rule  and domain R can be found. The graphs 

of the f and its inverse function, f –1, are reflections of each other in the line 
y = x as shown in Figure 1.13.

Figure 1.12a: Function machine for x → 2x + 3, or f(x) = 2x + 3

Figure 1.12b: Condensed form of function machine for x → 2x + 3, or f(x) = 2x + 3

×2 2xx 2x + 3+3

92x + 33

f 1– x( ) x 3–
2

------------=
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These graphs have a single point of intersection, which lies on the line 
y = x, and the coordinates of this point can be found by solving any one of the 
three equations:

f(x) = f –1(x) or f(x) = x or f –1(x) = x

For this function, the simplest equation to solve is likely to be f(x) = x, 
which gives 2x + 3 = x and hence x = –3. Since f(x) = x, the coordinates of this 
point of intersection will be (–3, –3).

Similarly, other functions that are uniquely determined by f can also be 

found, such as the reciprocal function , with the graphs of f and g shown 

(including a vertical asymptote for the graph of g at ) in Figure 1.14.

Figure 1.13: Graph of f, the line y = x and f –1
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CAS work well with functions as reified constructs, and the rules of these 
functions can be operated on algebraically and manipulated in various ways. 
For example, given g, as previously defined, g(x) and g(x – 3) + 2 can be 
compared graphically over the interval [–4, 4], as shown in Figure 1.15.

Figure 1.14: Graphs of f and g = 

Figure 1.15: Graphs of g(x) and g(x – 3) + 2 over the interval [–4, 4]
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Likewise, the rule of the sum function f + g can be readily obtained and 
subsequently used in further analysis, as required, see Figure 1.16.

The stationary points of the graph of the function h can be identified:

and their corresponding function values obtained:

Although not all CAS deal with the issue of multiple senses of ‘=’ in such an 
explicit form, the underpinning considerations are relevant to all CAS and 
other software with similar functionality, and users of these technologies 
should be conversant with the relevant conventions and processes of the 
technology that they are using.

F U N C T I O N A L  E Q U A T I O N S

So what are functional equations? Simply put, they are equations that involve 
functions as undetermined objects required to satisfy the given equation. That 
is, functions are considered as reified constructs that are themselves the 
solutions of functional equations. The solution of functional equations, in some 
form or other, is one of the oldest topics of mathematical analysis. 

Figure 1.16: Graph of h(x) = f(x) + g(x) over the interval [–4, 4]

f x x h x f x g x

Plot h x x

[ _]: [ _]: [ ] [ ]

[ [ ],{ , ,

= + = +
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4 44 10 10}, { , }]PlotRange → −

-4 -3 -2 -1

-10

-7.5

-5

-2.5

2.5

5

7.5

10

Solve h x x[ '[ ] , ]== 0

{{x -2},{x -1}}→ →

{ [ ], [ ]}h h− −2 1

{-2,2}
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Although the systematic study of such equations is a relatively recent, and 
contemporary, area of mathematical study, they have been considered 
implicitly in various forms since antiquity and more explicitly by 
mathematicians such as Euler in the 18th century and Cauchy in the 19th 
century. Modern works on functional equations and their applications can be 
found increasingly from the 1960s, with applications in fields such as 
geometry, nomography, physics, mechanics, probability, information theory 
and economics. A search on the internet using functional equations will yield a 
substantial range of articles, papers and references, many involving functional 
equations that bear the name or names of those who first studied them as a 
particular topic of interest in a given theoretical or application context. 

Key references from the modern era are Lectures on functional equations 
and their applications (Aczél 1966a); On applications and theory of functional 
equations (Aczél 1966b) and Functional equations in economics (Eichhorn 
1978). A brief and very readable introduction to functional equations suitable 
for senior secondary mathematics can be found in Alsina (2000). The study of 
functional equations also provides a powerful approach to working with 
important concepts and relationships in function, algebra and probability, 
such as symmetry, linearity and equivalence. 

Functional equations can be taken to mean almost any sort of equation 
involving the determination of unknown functions, and thus involve operator 
equations, differential equations and integral equations, as indeed is the case 
for many applications in the physical sciences. In this sense, the equation 
f ′(x) = f(x) is also a functional equation, since the solution sought is a function 
whose rate of change is the value of the function. The well-known general 
solution of this differential equation involves an arbitrary constant:

however, a specific solution can be found by providing a boundary condition:

This is sometimes summarised for student by saying that the exponential 
function (that is, the exponential function with base e) is the function which is 
its own derivative function. 

In some respects, functional equations are similar to differential equations; 
indeed, in some characterisations (but not the one which is used in this 
resource) they are considered to include differential equations. A more specific 

DSolve[f'[x] == f[x],f[x],x]

{{f[x] e C[1]}}x→

DSolve[{f'[x] == f[x],f[0] == 10},f[x],x]

{{f[x] →→ 10e }}x
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characterisation is to consider ‘functional equations’ as being those equations 
constructed from a finite number of unknown functions in a finite number of 
independent variables. In this sense, they then include difference equations, 
iteration equations and equations defining implicit functions, many of which 
have application in the humanities and in studies such as economics. 

Functional equations can also be used to express algebraic structural 
properties, such as the commutative and associative laws. If S is a set; x, y, z are 
arbitrary elements of S and • is a binary operation on S, then the commutative 
and associative laws are respectively:

x • y = y • x and x • (y • z) = (x • y) • z

If a function f is defined such that f(x, y) = x • y, then these laws have the 
respective functional equation forms:

f(x, y) = f(y, x) and f(x, f(y, z)) = f(f(x, y), z)

In this resource, only functional equations involving continuous (and 
generally differentiable) functions of a single real variable will be considered, 
with the exception of the chapter on difference equations, where discrete 
functions that map from N to R are considered.

This limits the field of study substantially, but provides a good basis for a 
useful range of investigations suitable for the senior secondary mathematics 
curriculum. While some calculus will be useful in parts of the discussion and 
development of the material, the material should be seen as introductory in 
nature, and by and large it is presented without the use of calculus and formal 
proofs. Indeed, it is a feature of functional equations within this more specific 
characterisation that the application of their theory and practice in fields like 
economics—for example, interest and annuity formulas—does not require the 
usual assumptions of calculus. 

A solution to a functional equation is a function (or class of functions) so, as 
indicated by various examples given earlier in this chapter, consideration of 
both rule and corresponding domain are central. Indeed, to say that a given 
function is a solution to a functional equation is to assert that one can verify 
that it satisfies the equation for the values of the independent variable across 
its domain. The emphasis in the following material will be the use of functional 
equations to explore well-known properties in the analysis of continuous and 
differentiable real functions that arise in the study of functions and graphs, 
algebra and calculus, in senior secondary school mathematics, and some of 
their basic theoretical and practical applications.
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The functional equations f(x) = f(–x) and f(–x) = –f(x) characterise those 
real valued continuous functions whose graphs exhibit vertical symmetry by 
reflection in the y-axis, and half-turn rotational symmetry about the origin, 
respectively; while the functional equation f(x) = f(x + k) for some non-zero 
real constant k, is used to define periodicity for real valued continuous 
functions. The humble successor function discussed earlier is the solution to 
the functional equation f(n + 1) = f(n) + 1 where f(0) = 0 for domain N.

Functional equations of the form f(x + 1) = a f(x) + b, where a and b are real 
constants, are called first order recurrence relations or difference equations 
when the domain of the required solution function is the set of natural 
numbers, N. These include the special cases of arithmetic sequences, 
f(x + 1) = f(x) + b, where a = 1 and geometric sequences f(x + 1) = a f(x), where 
b = 0. Other functional equations of this kind include the equation 
f(x + 1) = (x + 1) f(x), related to the factorial function, and the equation 
f(x) = f(x – 1) + f(x – 2), related to Fibonacci sequences.

The applications of this type of functional equation, whose solutions are 
non-continuous functions over N, in growth and decay contexts from biology 
and business are well known (see, for example, Chapters 4 and 10 of Hodgson 
& Leigh-Lancaster 1990). The logistic equation for population models, often 
used to demonstrate chaotic behaviour—depending on the parameters used in 
defining the function and/or the initial conditions—is a functional equation of 
the form f(x) = a f(x – 1) (1 – f(x – 1)), with solution sought over the domain N. 
This type of functional equation is often included in discrete mathematics-
based senior secondary mathematics courses.

If real-valued differentiable functions (with continuous derivatives) are 
considered, functional equations that relate f(x + y), f(x – y), f(xy) and  to 
f(x) and f(y) can be used to characterise properties of particular functions, for 
example, the functional equation f(xy) = f(x) f(y) is satisfied by power 
functions with rules of the form fq(x) = xq, where q is a rational constant, over 
their natural domain. For example, if q = 2, the functional equation 
f(xy) = f(x) f(y) expresses the relationship (xy)2 = x2y2, over the natural 
domain R, while if q = , the functional equation f(xy) = f(x) f(y) expresses the 
relationship over the natural domain R+ ∪ {0}. Similarly, the 
logarithm function is a well-known solution of the functional equation 
f(xy) = f(x) + f(y) over the natural domain R+ (see also Chapters 14 and 16, 
Binmore 1977).

f x
y
---( )

1
2
---

xy x y=
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S U M M A R Y

Functional equations are equations whose solutions are functions. The 
solution of a functional equation (or the rejection of a function as a 
possible solution to a functional equation) may involve computation, 
tables, graphs and algebra.
• Equality ‘=’ is an equivalence relation as it is reflexive (x = x); 

symmetric (x = y implies y = x) and transitive (x = y and y = z implies 
x = z).

• Less than ‘<’ and less than or equal to ‘≤’ are not equivalence relations.
• ‘Polynomial re-expression’ is an equivalence relation.
• ‘=’ is used in three ways: to assign a fixed value to a constant, for 

example, a = 2; to specify an equation which is satisfied by particular 
value(s) of a variable, for example 2x + 3 = 7; and to specify the rule of 
a function, in which the variable can assume any value in the domain 
of the function, for example, f: R → R, f(x) = x2.

• An equation may have: no solutions; a finite number of solutions; or 
infinitely many solutions.

• A function is a correspondence between two sets X and Y, that assigns 
(maps) elements of one set, X, to elements of another set, Y, with the 
following property: each element in the set X is assigned (mapped) to 
exactly one element in the set Y.

• A function is a set of ordered pairs for which no two ordered pairs 
have the same first element.

• If a rule of the form y = f(x) is available to describe the mapping, then 
the function f can be defined by f = {(x, y): y = f(x) and x ∈ X}. 

• The graph of a function is its representation by points on a cartesian 
coordinate system (two axes perpendicular to each other through a 
fixed reference point called the origin) where each ordered pair 
corresponds to the coordinates of a point.

• The set X is called the domain of f, written dom(f) or df, and the set Y 
is called the co-domain of f; the set of f(x) values resulting from the 
application of f(x) to all x in X is called the range of f, written ran(f) or 
rf, and is a subset of Y, that is, rf ⊆ Y. 

• Functional equations can: represent algebraic identities or structural 
properties; represent symmetry and linearity relationships; and 
model theoretical and practical applications involving difference 
equations.
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S T U D E N T  A C T I V I T Y  1 . 1

For each of the following relations, decide which of the three conditions for an equivalence 
relation are satisfied, providing a counter-example in each case where a condition is not 
satisfied. 

Assume a suitable natural domain where one is not specified. Hence decide whether the
relation is an equivalence relation or not.

a ‘is older than’
b ‘≤’ on R
c ‘⊆’ on subsets of the Roman alphabet
d ‘divides’ on N, where x divides y means there exist a natural number n such that y = nx

S T U D E N T  A C T I V I T Y  1 . 2

For each of several different types of graphics calculator and/or CAS, investigate how they deal 
with:

• assigning constants
• denoting variables
• defining rules of functions
• solving equations
• clearing definitions and assignments
• specifying conditions or constraints in defining functions and/or solving equations

Summarise the similarities and differences in approaches between technologies and models.

S T U D E N T  A C T I V I T Y  1 . 3

a Find the number which makes the equation 28 + 36 = 24 + ■ true, and explain your 
reasoning.

b Find the number which makes the equation 108 – 47 = ■ – 45 true, and explain 
your reasoning.

c Use the two terms n – 1 and n + 5 and the numbers 1 and 7 to form an equation 
using only the operation of addition that is true for n ∈ N.

d For what values of n is the equation 2(n – 3) + 4 = n + n – 3 true?

S T U D E N T  A C T I V I T Y  1 . 4

a Determine the values of x for which 4x – 7 = 2(x – 3) + 6
b Determine the values of x for which 4x – 7 = 2(2x – 3) – 1
c Determine the values of x for which 4x – 7 = 4(x – 3) + 6
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S T U D E N T  A C T I V I T Y  1 . 5

a Describe the relationship between equality of two functions and equality of their 
derivative functions.

b Describe the relationship between equality of two functions and equality of their 
anti-derivative functions.

c Describe the relationship between equality of two functions and equality of their 
definite integral over a given interval.

S T U D E N T  A C T I V I T Y  1 . 6

a Show that the graph of a quadratic polynomial function is symmetrical by reflection in 
the vertical line that passes through its vertex.

b Show that the graph of a cubic polynomial function is symmetrical by half-turn rotation 
about its point of inflection.
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C H A P T E R  2
A N  I N T R O D U C T I O N  T O  
F U N C T I O N A L  E Q U A T I O N S

TW O  S I M P L E  F U N C T I O N A L  E Q U A T I O N S

The study of functional equations is a contemporary area of mathematics that 
provides a powerful approach to working with important concepts and 
relationships in function and algebra such as symmetry, linearity and 
equivalence. Although the systematic study of such equations is a relatively 
recent area of mathematical study, they have been considered earlier in various 
forms by mathematicians such as Euler in the 18th century and Cauchy in the 
19th century. 

The study of simple functional equations can be used to provide a general 
framework for conceptualising and understanding key aspects of function and 
algebra in the senior secondary mathematics curriculum, and can also enable 
students to avoid some of the pitfalls commonly associated with work in these 
related areas of study, in particular algebraic equivalence (identity). 

Two simple examples of functional equations are:

 f(x) = f(–x) Functional equation (1)

and

f(x + y) = f(x) + f(y) Functional equation (2)

A solution to a functional equation is any function, f, that satisfies the 
equation for all values, or combinations of values, of the variable from its 
natural domain (that is, the largest set of values for which the function is 
defined). In the examples and problems considered here, these functions will 
generally be differentiable functions of a real variable. 

While a function, f, is typically defined by specification of both its domain, 
dom f = df, and its rule, f(x) = …, it is sometimes referred to implicitly by its rule 
f(x), as the corresponding natural domain (or, as it is sometime called, the implied 
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or maximal domain) is assumed. For example, the function f: R → R, f(x) = x2 
might be referred to as f(x) = x2 with the natural domain of R understood.

 The following discussion can be used to introduce students to the notion of 
functional equations. At some stages in the implementation of a mathematics 
curriculum it will be important to refer to functional equations explicitly, 
whereas at other times they can be considered as recurring theme 
underpinning investigation of the algebraic and graphical behaviour of 
functions throughout a course, and it is expected that teachers will move 
between these approaches as appropriate. Work on functional equations also 
highlights two important principles of mathematical reasoning:
• proof of a general mathematical statement typically involves algebraic 

reasoning using an arbitrary or free variable, which is subsequently 
universally quantified 

• disproof of a general mathematical statement typically involves 
identification of a single counter-example, that is, an object which satisfies 
the conditions of the general mathematical statement but not its conclusion

Both these aspects of mathematical reasoning are highlighted in the following 
discussion. The functional equations (1) and (2) have been chosen as 
introductory examples to illustrate the related analysis as they:
• are accessible and familiar with respect to basic background knowledge and 

skills
• have simple solutions
• provide an example involving one variable and another example involving 

two variables
• provide a context for discussion of two important concepts in mathematics—

symmetry and linearity

S O L U T I O N S  T O  T H E S E  F U N C T I O N A L  E Q U A T I O N S

E X A M P L E  2 . 1

Consider the functional equation f(x) = f(–x) … (1). The function f(x) = x2 
is a solution to (1) since f(–x) = (–x)2 = –x × –x = x2 and f(x) = x2 by 
definition.

This can also be seen from a graphical consideration of the problem. 
The functional equation f(x) = f(–x) tells us that for any function f 
satisfying this equation, the negative of a given domain value has the 
same function output as the value itself, that is, the graph of the function 
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will be symmetrical about the vertical coordinate axis, the y-axis, where 
the axis is the mirror line for reflection. 

This is a well-known property of the graph of f(x) = x2, as shown in 
Figure 2.1.

While a table of values such as Table 2.1 below can be used to gain an 
idea of the likely relation, or for illustrative purposes, it is not conclusive, 
as evaluations of expression for only a finite subset of (typically integer) 
values from the natural domain a function can be represented.

Figure 2.1: Graph of f(x) = x2

Table 2.1: values of f(x) and f(–x) for integer values of x from 0 to 10

f[x_]:=x2

Table[x,f[x],f[-x]}, {x,0,10}]//TableForm

0 0 0

1 1 1

2 4 4

3 9 9

4 16 16

5 25 25

6 36 36

7 49 49

8 64 64

9 81 81

10 100 100

-4 -2 2 4

2.5

5

7.5

10

12.5

15
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This function is clearly not the only solution to (1) as can be seen from 
the graph of g: R → R, g(x) = cos (x) shown in Figure 2.2, which also 
exhibits symmetry by reflection in the vertical axis.

This can also be argued from consideration of a unit circle diagram, as 
shown in Figure 2.3, where the same horizontal distance, cos (x), 
corresponds to either the projection of the endpoint of the arc length of x 
units in the positive direction (anticlockwise) mapped around the 
circumference of the unit circle onto the horizontal axis, or the projection of 
the endpoint of the arc length of x units in the negative direction 
(clockwise) mapped around the circumference of the unit circle onto the 
horizontal axis.

Figure 2.2: Graph of g(x) = cos (x)

Figure 2.3: Unit circle representation that cos(x) = cos(–x)

-6 -4 -2 2 4 6

-1

-0.5

0.5

1

-1 -0.5 1

-1

-0.5

0.5

x

cos(x)

–x

1

} Arc length x units
anticlockwise
from horizontal

} Arc length x units
clockwise
from horizontal
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Similarly, the absolute value, or modulus, function is a solution to (1), 
as can be seen from the graph of its function h: R → R, h(x) = | x | shown 
in Figure 2.4 below:

In fact it is a consequence of the definition of the absolute value 
function that | x | = | –x |. In each of these cases, an argument has been 
used to show how the result applies for an arbitrary x, and hence applies 
for all x in the relevant domain of interpretation.

In many cases where the graph of a function is indicated, this can only 
actually be referring to an illustrative part of the graph, since either the 
natural domain, or the domain used to specify a function, will in many 
cases be an unbounded infinite set such as R. This assumes confidence 
that the overall behaviour of a function has essentially been captured in 
the illustrative part of the graph drawn. This is a subtle but important 
point that needs to be drawn to the attention of students, especially when 
technology is used to assist graphical analysis in mathematical inquiry. 

Technologies such as graphics calculators and CAS provide various 
mechanisms for controlling the subsets of the domain and range of a 
function used in plotting a graph, given its rule, as well as applying their 
own built in default settings and/or procedures for optimising the key 
features of the function to be exhibited graphically. For example, the CAS 
Mathematica requires the rule of the function, f[x] to be used in 
conjunction with the interval [a,b] over which the graph is to be 
plotted, by execution of the command Plot[f[x],{x, a, b}] The 
vertical axis scale, and the starting point on this scale where the graph is 
plotted, is determined by an internal procedure. This procedure can be 

Figure 2.4: Graph of h(x) = |x|

-4 -2 2 4

1

2

3

4

060503•01 Functional Eqs 4pp  Page 36  Friday, September 30, 2005  8:01 PM



CHAPTER 2

An introduction to functional equations

37

over-ridden by use of options for Plot such as PlotRange and 
AxesOrigin. Students should be encouraged to practise varying the 
dimensions of the part of the graph exhibited using the relevant 
specification procedures for the technology they are using. This will 
avoid their confounding the horizontal and vertical ‘plot-window’ or 
‘frame’ used by a technology with the domain and range proper of a 
given function.

The function f(x) = x2 is, however, not a solution to functional 
equation (2) since:

f(x + y) = (x + y)2 = x2 + 2xy + y2 = f(x) + 2xy + f(y) 

and, in general, this is not equal to f(x) + f(y) = x2 + y2. 
The false belief that f(x + y) = f(x) + f(y) for f(x) = x2 is one of the most 

common algebraic misconceptions of students. For example, many 
students believe (incorrectly) that the expansion of (x + 2)2 is x2 + 4 
rather than x2 + 4x + 4. Now, it may be simply that these students ‘forgot’ 
the middle term, but whatever the reason, students who repeatedly make 
this error have most likely adopted a belief in a schema for expansion that 
leads in this case to f(x + 2) = f(x) + f(2) = x2 + 4. Certainly they all too 
often write this—or variations of it—in their own working. 

To overcome such fallacious reasoning, students require their 
attention to be drawn to it explicitly, and to the correct reasoning as well. 
The latter can be demonstrated by the use of physical manipulatives such 
as Algebra Experience Materials (AEM) leading to consideration of a 
diagram such as that shown in Figure 2.5, highlighting the shaded areas 
corresponding to x2 and y2 as a subset of the total area of (x + y)2:

Figure 2.5: Areas of x2 and y2 as a subset of the total area of (x + y)2

x2

y2
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Thus the total area representing (x + y)2 is comprised of x2 and y2 and two 
lots of xy. In the case where y = 2, this gives (x + y)2 = x2 + 4 + 4x.

For some students it will be important to exhibit a selection of 
counter-examples to the linearity assumption of f(x + y) = f(x) + f(y) for 
f(x) = x2. Technology can be used to test a range of combinations of 
values for x and y:

Indeed, a table of values such as Table 2.2, can help to illustrate what 
the difference is in this case, for example, where y = 3 and x varies in 
integer steps from –5 to 5.

It is important to note that solutions to functional equations are those 
functions that satisfy the equation in general for values of the dependent 
variable from the natural domain of the function. 

It is possible, however, to inquire whether there are particular values, 
or combinations of values, of the independent variable for which a given 
equation is satisfied. Thus, it will also be important to show students that 
there are some particular combinations of values of x and y for which 

Table 2.2: Computation of f(x + y) and f(x) + f(y) 

Table[{x,3,f[x+3],

f[x]+f[3], f[x+3]–(f[x]+f[3])}, {x,–5,5}]//TableForm

-5 3 4 34 –30

–4 3 1 25 –24

–3 3 0 18 –18

–2 3 1 13 –12

–1 3 4 10 –6

0 3 9 9 0

1 3 16 10 6

2 3 25 13 12

3 3 36 18 18

4 3 49 25 24

5 3 64 34 30

f[x_]:= x

{f[-3 + 7],f[

2

{ [ ], [ ] [ ]}f f f1 2 1 2+ +
{9,5}

--3] + f[7]}

{16,58}
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f(x + y) = f(x) + f(y) given f(x) = x2. In fact, in this case there are infinitely 
many such values.

If x = 0 and y is any real number, or if y = 0 and x is any real number, 
then for such combinations of value of the independent variables x and y: 

f(x + 0) = f(x) and f(x) + f(0) = f(x) + 0 = f(x)

and similarly:

f(0 + y) = f(y) and f(0) + f(y) = 0 + f(y) = f(y)

So, for any combination where either or both of x and y is zero, (x + y)2 
will have the same value as x2 + y2. 

E X A M P L E  2 . 2

Consider the functional equation f(x + y) = f(x) + f(y) … (2). The 
function h: R → R, h(x) = 2x is a solution of (2) since:

h(x + y) = 2(x + y) = 2x + 2y = h(x) + h(y) 

This is, in fact, a simple application of the distributive property for 
multiplication over addition a(b + c) = ab + ac for real numbers applied to 
linear expressions. However, the function h is not a solution of (1) since:

h(–x) = 2(–x) = –2x which is not the same as h(x) = 2x

A straightforward counter-example is provided by any non-zero value 
of x, for example, if x = 6, then 2 × –6 = –12, but 2 × 6 = 12. This can also 
be observed by noting that the graph of h(x) shown in Figure 2.6 is not 
symmetrical under reflection in the y-axis.

Figure 2.6: Graph of h(x) = 2x
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While the graph of the function h is not symmetrical by reflection in 
the vertical axis, it does have a half-turn, or rotational, symmetry under 
the transformation Rπ about the origin (0, 0). For this function, and other 
functions that have this symmetry, the function value for the negative of 
an element of the domain of the function is the negative of the function 
value of that element of the domain, or more concisely, f(–x) = –f(x). 

This relationship can be expressed as another functional equation, one 
which characterises a half-turn rotational symmetry about the origin for 
the graphs of certain functions:

f(–x) = –f(x) Functional equation (3)

Clearly, the function f(x) = x2 will not be a solution to (3), since it has 
previously been shown that it is a solution to (1).

In general, several key questions can be formulated with respect to 
functions and functional equations:

• For a given functional equation, what functions are solutions of that 
equation? 

• For a given function, what functional equations does it satisfy? 

• What values of the domain of a function satisfy the relationship 
defined by a given functional equation? 

Where functional equations arise in modelling contexts, such as the 
spread of a disease, expectation and variance, or the construction of tax 
scales, information related to the situation may provide some insight into 
the likely nature of the solution function.

S U M M A R Y

The solution of functional equations involve writing equations in terms 
of an arbitrary function f, and then determining those functions that 
satisfy the equation over their natural domain:
• A function may be shown to not be a solution to a given functional 

equation by numerical or graphical counter-example, or by algebraic 
reasoning

• In general, an algebraic argument is required to show that a given 
function is a solution to a function equation for all values (or 
combination of values) of the independent variable over its natural 
domain.
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• For a given function, there may be some values of its natural domain 
that satisfy the relationship defined by a particular functional 
equation. These values are not suitable as counter-examples.

• f(x) = f(–x) is a functional equation, for which f(x) = x2 is a solution, 
but for which h(x) = 2x is not a solution.

• f(–x) = –f(x) is a functional equation, for which h(x) = 2x is a solution, 
but for which f(x) = x2 is not a solution.

• f(x + y) = f(x) + f(y) is a functional equation, for which h(x) = 2x is a 
solution, but for which f(x) = x2 is not a solution.

S T U D E N T  A C T I V I T Y  2 . 1

For each of the following function rules, with their corresponding natural domain, describe, as 
applicable, the appearance and behaviour of the graph of the function for:

• small and large intervals centred around the origin
• large negative values of the independent variable
• large positive values of the independent variable
a f(x) = 4x
b f(x) = x2

c f(x) = x3

d f(x) = x4

e f(x) = 10
f f(x) = √x
g f (x) = sin (x)
h f(x) = cos (x)

i f(x) = 

j f(x) = 

k f(x) = 2x

l f(x) = log10 (x)
m f(x) = |x|

S T U D E N T  A C T I V I T Y  2 . 2

Identify which of the functions listed in Activity 2.1 are solutions to the functional equation 
f(x) = f(–x). Provide either an algebraic argument or a diagram to support your decision, and 
check this graphically.

1
x-----

1
x2--------
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S T U D E N T  A C T I V I T Y  2 . 3

Investigate which functions satisfy the functional equation f(–x) = –f(x). Provide either an 
algebraic argument or a diagram to support your decision, and check this graphically. 

S T U D E N T  A C T I V I T Y  2 . 4

Identify any functions that are solutions to functional equations (1) and (3).

S T U D E N T  A C T I V I T Y  2 . 5

A function f is said to be self-inverse if f(f(x)) = x for all x in its natural domain.
a Investigate whether any of the functions used for examples in this chapter are 

self-inverses.
b Identify some continuous functions of a real variable that are self-inverse.

S T U D E N T  A C T I V I T Y  2 . 6

Consider the functional equation f(x × y) = f(x) + f(y).
a If f(x) = x, determine the values of x and y for which this functional equation is true.
b If f(x) = x2, determine the values of x and y for which this functional equation is true.

S T U D E N T  A C T I V I T Y  2 . 7

Consider the rectangle as shown in the diagram below with side lengths x and y. 

Interpret each of the following functional equations with respect to the rectangle:
a f(x, x) = 1
b f(x, y) = f(y, x) 
c f(ax, ay) = a2 f(x, y)

x

y
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C H A P T E R  3
F U N C T I O N A L  E Q U A T I O N S  
I N V O L V I N G  f(x) A N D  
C O N S T A N T S

Probably the simplest functional equations are those expressed in terms of f(x) 
and some constants, and these are the focus of the discussion in this chapter. 

Two functional equations of this form have already been considered in 
Chapter 1, and are summarised in Table 3.1. They characterise important 
symmetry properties of the graphs of certain functions.

Table 3.1: Summary of two simple functional equations 

Functional equation Sample solution Graph

f(x) = f(–x)
or
f(x) – f(–x) = 0

f(x) = cos(x)

–f(x) = f(–x)
or
f(x) + f(–x) = 0

f(x) = sin(x)

-6 -4 -2 2 4 6

-1

-0.5

0.5

1

-6 -4 -2 2 4 6

-1

-0.5

0.5

1
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These functional equations have many solutions—those functions whose 
graphs are symmetrical about the vertical axis by reflection in this axis as a 
mirror line, and those functions whose graphs are symmetrical about the 
origin by a half-turn rotation, respectively. Similarly, any power function of 
the form f(x) = xn where n is an even integer is a solution to the functional 
equation f(x) = f(–x), while any power function of the form f(x) = xn where n is 
an odd integer is a solution to the functional equation –f(x) = f(–x) or 
f(x) = –f(–x). 

Some texts refer to any function whose graph has the property f(x) = f(–x) 
as an even function and any function whose graph has the property 
f(x) = –f(–x) as an odd function. 

The matrix for reflection in the y-axis (that is, the line x = 0) is specified by 
the relation

My(x, y) = (–x, y) so:

as shown in Figure 3.1:

Figure 3.1: Reflection of a point in the vertical axis, x = 0

My
x
y

1– 0
0 1

x
y

x–

y
= =

1

–1

1–1–2 2

2

y

x

(–x, y) (x, y)
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The effect of this transformation is to map the graph of y = f(x) onto the 
graph of y = f(–x). For functions whose graphs are symmetrical by reflection 
about the y-axis, this means that y = f(x) and y = f(–x) are identical, that is 
f(x) = f(–x).

The matrix for a half-turn rotation anticlockwise about the origin (0, 0) is 
specified by the relation Rπ (x, y) = (–x, –y) so:

This is equivalent to a reflection in the vertical axis x = 0 followed by 
reflection in the horizontal axis y = 0, that is Rπ = MxMy as can be seen from 
Figure 3.2:

The effect of this transformation is to map the graph of y = f(x) onto the 
graph of –y = f(–x) or y = –f(–x). For functions whose graphs are symmetrical 
by half-turn rotation about the origin (0, 0) this means that y = f(x) and 
y = –f(–x) are identical, that is f(x) = –f(–x).

Figure 3.2: Half-turn rotation of a point anticlockwise about the origin

Rπ
x
y

1– 0
0 1–

x
y

x–

y–
= =

1

–1

–2

1–1–2 2

2

y

x

(–x, –y)

(x, y)
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The question then arises: do functional equations of this sort ever have 
unique solutions or families of solutions? This question is explored further in 
the following discussion.

F U N C T I O N A L  E Q U A T I O N S  A N D  S C A L E

E X A M P L E  3 . 1 :  T H E  F U N C T I O N A L  E Q U A T I O N  f ( k x )  =  k f (x )

How does one go about finding a solution, or solutions, to a functional 
equation such as f(kx) = kf(x)? A helpful starting point is to try to see if 
there is a simple way to interpret the functional equation. For example, as 
k ≠ 1 is a fixed non-zero real constant (the solution is trivial if k = 0 or 
k = 1) one can assume a particular value, such as k = 2, and see what 
happens with respect to some simple known functions. 

For any solution to the particular functional equation f(2x) = 2f(x), the 
value of the function at twice the value of a given input is twice the value 
of the function at that given input, so, if x = 3, then f(6) = 2f(3), and 
similarly for all values of the variable x. Now, various potential solution 
functions can be ‘tried’ empirically by inspection of tables of values; 
however, this process can only identify counter-examples for various 
functions, or, if no counter-examples are found after some systematic 
variation of the range of independent variable values in tables, it can 
suggest that a given function is a possible solution.

Suppose f(x) = x2 and let x take integer values from –5 to 5. Table 3.2 
provides a selective comparison of values of f(2x) and 2f(x) for this function.

Table 3.2: Comparison of f(2x) and 2f(x) for f(x) = x2 for integer values of x from 
–5 to 5.

Table[{x,f[2x], 2f[x]},{x,-5,5}]//TableForm

-5 100 50

–4 64 32

–3 36 18

–2 16 8

–1 4 2

0 0 0

1 4 2

2 16 8

3 36 18

4 64 32

5 100 50
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This table indicates three things:
• f(x) = x2 is not a solution to the functional equation f(2x) = 2f(x).
• x = 0 may not be a useful value to choose as a counter-example, since 

for this particular value of the domain the relationship is satisfied
• f(x) = x2 appears to be a solution to the functional equation 

f(2x) = 2 × 2f(x) = 4f(x).
The third observation can be verified algebraically: 

if f(x) = x2 then f(2x) = (2x)2 = 2x × 2x = 4x2 = 4f(x)

This also suggests a further line of investigation. Suppose f(x) = xn, 
where n is a positive integer, then, in general f(kx) = (kx)n = knxn. For this 
to be a solution to the functional equation f(kx) = kf(x) it is required that 
knxn = kxn. This will be true only when n = 1, so there is a solution: 
f(x) = kx.

Thus, when k = 2, a solution is f(x) = 2x, since f(2x) = 2(2x) = 4x and 
2 f(x) = 2 × 2x = 4x. There are other solutions; indeed, any function of the 
form f(x) = ax will be a solution to the functional equation f(kx) = kf(x) as 
a(kx) = k(ax) for any real numbers a, k and x.

On the other hand, the function g(x) = sin(x) is not a solution to the 
functional equation f(2x) = 2f(x), since this would imply that 
sin(2x) = 2sin(x). While many students appear to believe, incorrectly, that 
this relationship is true, the corresponding graphs, as shown in Figure 3.3, 
clearly indicate that this is not the case.

Figure 3.3: Graphs of sin(2x) and 2sin(x)

-6 -4 -2 2 4 6

-2

-1

1

2
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Consideration of the unit circle will indicate that the equation 
sin(2x) = 2sin(x) does in fact have infinitely many solutions—one at each 
integer multiple of π. However, it is also clear that the graphs of the 
functions, and hence the values of the functions, differ across the rest of 
the natural domain of the sine function, R. In general, g(x) = sin(x) is not 
a solution to the functional equation f(kx) = kf(x), for any real non-zero 
values of k other than k = 1 or k = –1.

The solution of the functional equation f(kx) = kf(x) can also be 
considered in terms of transformations. The transformation of dilation by 
factor k from the horizontal axis in the vertical direction, D1, k transforms 

y = f(x) into  = f(x) or y = kf(x). Similarly, the transformation of 

dilation by factor  from the vertical axis in the horizontal direction, 

 transforms y = f(x) into y =  or y = f(kx). Thus, those 

functions whose graphs are identical under the transformations D1, k and 

are those functions which are solutions to the functional equation 

f(kx) = kf(x). The graphs of linear functions where f(x) = ax, and a is a 
non-zero real number, have this property.

F U N C T I O N A L  E Q U A T I O N S  A N D  P E R I O D

E X A M P L E  3 . 2 :  T H E  F U N C T I O N A L  E Q U A T I O N  f ( x  +  k )  =  f ( x )

For this functional equation, k is taken to be a non-zero real constant. 
Interpreting this functional equation tells us that for every value x in 
the domain of f, there is a corresponding value x + k, also in the domain 
of f, such that the function value at x is the same as the function value 
at x + k. A straightforward solution to this functional equation is the 
family of constant functions with natural domain R where:
{fa: f(x) = a, and a is a real constant}.

For example, if f10(x) = 10 for all real x, then f10(x) = 10 and 
f10(x + k) = 10 for any real value of k, can be seen in Figure 3.4.

y
k
---

1
k
---

D1
k
--- ,1

f
x

k
1

⎛
⎝⎜

⎞
⎠⎟

D1
k
--- ,1
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Some students may believe that the quadratic function 

f(x) = ax2 + bx + c is a possible solution because of the symmetry 

property f  = f , for real values of h. For these 

students it will need to be carefully pointed out that the distance between 

the x values, x =  and x =  with the same f(x) value is not a 

constant k, but is variable and equal to 2h. For example, if f(x) = x2 then it 
is true that f(–2) = f(2), in which case k would need to be 4, since 
f(–2 + 4) = f(2). However, f(–5) = f(5), in which case k would need to be 
10, since f(–5 + 10) = f(5), but k must have a fixed value, so this function 
is not a solution to the functional equation f(x + k) = f(x).

In fact, the functional equation f(x + k) = f(x) provides the definition of 
a periodic function. This may also be considered in terms of 
transformations, since a translation by k units horizontally to the left, or 
T–k, 0 transforms y = f(x) onto y = f(x – (–k)) or y = f(x + k). Thus, any 
function whose graph is identical to that of the same function translated 
k units to the left will be a solution of the functional equation 
f(x + k) = f(x). The function h: R → R, where h(x) = sin(nx), and n is a 
non-zero real constant, is a well-known periodic function with this 
property. 

Once a solution is found, then others can be generated by various 
transformations, where the amplitude is a multiple of the first solution, or 
where the phase is an integer multiple of k, or where the period is an 

Figure 3.4: Graph of f10(x) = 10
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integral fraction of the period of the first solution. An initial solution can 
be found by horizontal dilation of the basic sine function, with period 2π. 
Suppose, as is commonly the case where hourly values of a function are 
determined throughout a day, that the required period is 24 hours, that is, 
k = 24. Then we need to apply a horizontal dilation factor m, Dm, 1 such 

that 2πm = 24, or m = . The dilation Dm, 1 transforms y = f(x) into 

y = , or in this particular case, transforms y = sin(x) into 

y =  or y = . The graph of this function is shown in 

Figure 3.5, where it can be seen that for h(x) =  we have 

f(x + 24) = f(x).

In general, for arbitrary k, the circular function with rule 

h(x) = is a solution to the functional equation f(x + k) = f(x).

More generally, periodic behaviour is displayed by infinite sums of 
sine and cosine functions using what are called Fourier series. These can 
be used to model a range interesting waveforms such as square and 
triangular waves. In 1807, the French mathematician Joseph Fourier 
described how a rule for an arbitrary function defined over the interval 
(–π, π) could, when certain conditions are satisfied, be represented in the 

form: . Such expressions are called Fourier 

series. 

Figure 3.5: Graph of h(x) = 
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The coefficients in the expansion of Fourier series are given by the 

relations:   and 

 and using graphs for functions with rules 

represented in the form , it is possible to 

represent various waveforms such as square waves and triangular waves, 
a somewhat surprising result given the curved nature of graphs of the 
sine and cosine functions. 

For example, square waves can be represented by the graphs of Fourier 
series as shown in Figures 3.6a and 3.6b.

and triangular waves may be represented by the Fourier series:

Computer algebra systems are an ideal tool for exploring waveforms 
based on square waves, triangular waves and combinations of these 

Figure 3.6a: Graph of sine-based Fourier series

Figure 3.6b: Graph of cosine-based Fourier series
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waveforms. This is a good context for some open-ended student 
exploration of mathematical ideas and their applications using 
technology. Such work could initially proceed from consideration of 
graphs of functions with rules of the form:

f1(x) = a1sin(x)
f2(x) = a1sin(x) + a2sin(3x)
f3(x) = a1sin(x) + a2sin(3x) + a3sin(5x) 

and so on for different combinations of values of the coefficients.
This could subsequently be extended to investigation of combinations 

of expressions for square and triangular waveforms to develop other 
Fourier series with graphs that represent waveforms such as those shown 
in Figure 3.7.

Figure 3.7: Graphs of more complicated waveforms
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S U M M A R Y

• Functions that satisfy the functional equation f(x) = f(–x) are called 
even functions and their graphs exhibit reflection symmetry in the 
y-axis, that is, the vertical line x = 0. Examples of even functions are 
x2, cos(x) and |x|.

• Functions that satisfy the functional equation –f(x) = f(–x) or 
f(x) = –f(–x) are called odd functions and their graphs exhibit half-
turn rotational symmetry about the origin (0, 0). Examples of odd 
functions are x3, sin(x) and .

• Many students mistakenly assume, or believe, that the functional 
equation f(kx) = kf(x) is satisfied by almost all functions and hence 
often make ‘algebraic’ errors such as the following in their working:
• sin(2x) = 2sin(x)
• (3x)4 = 3x4

• log(5x) = 5log(x)
Explicit attention to this functional equation should provide students 
with the understanding that will enable them avoid these errors.

• The functional equation f(x + k) = f(x) describes periodic functions, 
and a solution to this equation is the circular function of the form 
h(x) = . 

S T U D E N T  A C T I V I T Y  3 . 1

a Show that the function f(x) = 2x is neither odd nor even, and draw the graphs of f(x), 
f(–x), –f(x) and –f(–x) on the same set of axes.

b Show that the relation y2 = x2 is both even and odd, and draw its graph. 

S T U D E N T  A C T I V I T Y  3 . 2  

Use tables, graphs or algebraic reasoning to decide whether each of the following functions is 
a solution to the functional equation f(kx) = kf(x).

a f(x) = 4x
b f(x) = x2

c f(x) = x3

d f(x) = x4

e f(x) = 3

1
x
---

2πx
k

----------⎝ ⎠
⎛ ⎞sin
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f f(x) = √x
g f (x) = sin(x)
h f(x) = cos(x)

i f(x) = 

j f(x) = 

k f(x) = 2x

l f(x) = log10(x)
m f(x) = |x|

S T U D E N T  A C T I V I T Y  3 . 3

Use tables, graphs or algebraic reasoning to decide whether each of the following functions is 
a solution to the functional equation f(x + k) = f(x).

a f(x) = 4x
b f(x) = x2

c f(x) = x3

d f(x) = x4

e f(x) = 3
f f(x) = 
g f (x) = sin (x)
h f(x) = cos (x)

i f(x) = 

j f(x) = 

k f(x) = 2x

l f(x) = log10(x)
m f(x) = |x|

S T U D E N T  A C T I V I T Y  3 . 4

Investigate solutions of the following functional equations.

a f(x) = 

b f –1(x) = f(x)

c f = 

S T U D E N T  A C T I V I T Y  3 . 2  ( C O N T I N U E D )

1
x-----

1

x2---------

x

1
x-----

1

x2---------

1
f x( )---------------

1
x-----⎝ ⎠

⎛ ⎞ 1
f x( )---------------
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S T U D E N T  A C T I V I T Y  3 . 5

Discuss the relationship between the functional equation f(–x) = –f(x), the functional equation 
f(kx) = kf(x) and their solutions.

S T U D E N T  A C T I V I T Y  3 . 6

a Find all constant, linear and quadratic functions that are solutions to the functional 
equation: f(x) f(–x) = f(x2). 

b Find a real valued differentiable function f which is a solution to the functional 
equation: x2 f(x) + f(1 – x) = 2x – x4. 
(Hint: replace x by 1 – x and compare the resultant equation with the given equation).
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C H A P T E R  4
F U N C T I O N A L  E Q U A T I O N S  
I N V O L V I N G  f(x),  f(y) A N D  
E Q U I V A L E N C E S

One of the most common incorrect assumptions students make about many 
functions of a single real variable is that they satisfy the functional equation 
f(x + y) = f(x) + f(y). Indeed, one of the major tasks of teachers is to ensure 
that, as much as possible, students do not incorporate incorrect ‘steps’ such as 
the following in their work on function and algebra:

The functional equation f(x + y) = f(x) + f(y) is called the Cauchy equation 
as it was studied in the 19th century by the famous French mathematician 
Augustin Louis Cauchy, who also introduced the function representation of 
the limit definition of the derivative in calculus:

The Cauchy functional equation also characterises a linearity property for 
those functions where that the functional value of a sum is the sum of the 
functional values. This is a rather special property that does not hold, 
in general, for most functions—contrary to the popular belief of many 
students. 

(x + y)2 = x2 + y2

log(x + y) = log(x) + log(y) sin(x + y) = sin(x) + sin(y)

1
x y+
------------

1
x
---

1
y
---+=

x y+ x y+= 2x y+ 2x 2y+=

f′ x( ) f x h+( ) f x( )–
h

------------------------------------
h 0→
lim=
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However, it does relate to the distributive property for real numbers, and 
hence common algorithms for multiplication. That is, if f: R → R, f(x) = ax 
then f(x + y) = f(x) + f(y) since a(x + y) = ax + ay. For example:

 6 × 17 = 6 × (10 + 7) = (6 × 10) + (6 × 7) = 60 + 42 = 102.

Thus it is perhaps not surprising that students would have an inherent belief in 
its more widespread ‘applicability’ than is actually the case. 

The linearity property does apply in other contexts:
• differentiation of a real-valued functions of a single variable

D[f + g] = D[f] + D[g], for example

• integration of a real-valued function of a single variable 
∫(f + g) dx = ∫f dx + ∫g dx, for example 
∫(cos(x) + e2x) dx = ∫cos(x) dx + ∫e2x dx = sin(x) + e2x + c where c ∈ R

• to linear (affine) transformations of vectors where T(u + v) = Tu+ Tv, for 
example:

if   and  then

 and 

• expectation and variance of the sum of two independent random variables

E(X + Y) = E(X) + E(Y) V(X + Y) = V(X) + V(Y)

Thus, students will need to develop an appreciation that while linearity is a 
desirable property for the purposes of computation and simplification, it is also 
a special one which applies in some contexts, but not in others.

F O R M S  I N V O L V I N G  f(x + y), f(x) + f(y) A N D  O T H E R  
E X P R E S S I O N S

The follow discussion investigates whether different functions are, or are not, 
solutions to the Cauchy equation, and also whether there are other simple 
functional equations involving f(x + y) or f(x) + f(y), f(x) and f(y) that have 
particular solutions involving real differentiable functions. From the earlier 
work in Chapters 1 and 2, it follows that f: R → R, f(x) = x2, is not a solution to 

D x2 1
x
---+ D x2[ ] D 1

x
---+ 2x 1

x2
-----–= =

1
2
---

T 1 2
3 4

= u 0
3

= v 1–

1
=

T u v+( ) 1 2
3 4

1–

4
7
13

= = Tu Tv+ 6
12

1
1

+ 7
13

= =
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the Cauchy functional equation, while h: R → R, h(x) = 2x is a solution to this 
functional equation.

E X A M P L E  4 . 1

An approach to finding a possible solution to a functional equation is to 
start with the general form of a particular known type of function, and 
see what conditions (if any) are required for this to be the case. While this 
approach does not answer the question of identifying all possible 
solutions to a functional equation, it does identify those solutions of a 
particular kind. A similar approach is taken in various aspects of 
investigating the solution of certain types of differential equation. 

For example, consider the general linear function 
f: R → R, f(x) = ax + b where the parameters a and b are real valued 
constants. If this form of function is a solution to the Cauchy functional 
equation, then:

f(x + y) = f(x) + f(y)
⇒ a( x + y) + b = ax + b + ay + b
⇒ ax + ay + b = ax + ay + 2b
This will only be the case when b = 0. Thus, any linear function of the 
form f: R → R, f(x) = ax, where a is a real valued constant, will be a 
solution to the Cauchy equation, including the trivial case of the constant 
function with rule f(x) = 0, that is, the case where a = b = 0.

However, this is the only constant function, f(x) = k, where k is a real 
constant, that is a solution; since if k is non-zero, then by definition 
f(x + y) = k, but f(x) + f(y) = k + k = 2k. Thus, if, for example, k = 3, and 
hence f: R → R, f(x) = 3, then it is the case by definition of the function that 
f(x + y) = 3 for all real combinations of x and y; however, 
f(x) + f(y) = 3 + 3 = 6, for all real combinations of x and y, as can be seen 
from Figure 4.1.

Figure 4.1: Graph of the constant function f(x) = 3
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If a similar approach is tried with polynomials of higher degree, the 
corresponding set of simultaneous equations that specify the required 
conditions only yield a solution when each of the coefficients of powers of 
x, except the linear term, are zero. That is, in each case they reduce to the 
previous solutions. 

E X A M P L E  4 . 2

Consider as an alternative, the set of power functions, f: R → R, f(x) = xn, 
where n is a positive integer. For the cases where n = 1 and n = 2, positive 
and negative results have already been established respectively. When 
n > 2, an algebraic approach can be used to show that f(x + y) ≠ f(x) + f(y). 
Table 4.1 provides the expansion of f(x + y) = (x + y)n for n = 0 to 6.

From this it can be seen that for n > 2, there are ‘middle terms’ in the 
expansion of (x + y)n, which, when x and y are non-zero, are themselves 
non-zero. Thus, for most combinations of values of x and y, f(x + y) will 
not be equal to f(x) + f(y). The general case for this can be argued from 
Pascal’s triangle or the binomial expansion of (x + y)n:

Indeed, this form plays an important role in determining the rule for 
the derivative of f(x) = xn where n ∈ N; from the first principles definition 
of the derivative function:

Table 4.1: Expansion of f(x + y) = (x + y)n for n = 0 to 6

0 1

1 x+y

2 x2+2xy+y2

3 x3+3x2y+3xy2+y3

4 x4+4x3y+6x2y2+4xy3+y4

5 x5+5x4y+10x3y2+10x2y3+5xy4+y5

6 x6+6x5y+15x4y2+20x3y3+15x2y4+6xy5+y6

x y+( )n n

n⎝ ⎠
⎛ ⎞ xny0 n

n 1–⎝ ⎠
⎛ ⎞ xn 1– y1 n

n 2–⎝ ⎠
⎛ ⎞ xn 2– y2 …+ + +=

n

2⎝ ⎠
⎛ ⎞ x2yn 2– n

1⎝ ⎠
⎛ ⎞ x1yn 1– n

0⎝ ⎠
⎛ ⎞ x0yn+ +

f′ x( ) f x h+( ) f x( )–
h

------------------------------------
h 0→
lim=
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In this case, the ‘middle terms’ of the binomial expansion in the 
numerator tend to zero as h tends to the limiting value of zero since each 
of these terms contains a non-zero power of h.

For some functions there are algebraically equivalent expressions for 
f(x + y) in terms of a simple combination of f(x) and f(y), even if they are 
not of the form f(x) + f(y). 

E X A M P L E  4 . 3

In some cases it is possible to identify functions that are solutions to 
functional equations involving one of f(x + y) or f(x) + f(y). For example, 
consider the function f: R → R, f(x) = 2x. 

If the values x = 3 and y = 4 are assigned, it is clear that 
f(x + y) ≠ f(x) + f(y) since f(3 + 4) = f(7) = 27 = 128 while 
f(3) + f(4) = 23 + 24 = 8 + 16 = 24. This can also be seen by inspection of 
the graph of f shown in Figure 4.2 by considering sample vertical and 
horizontal lines for coordinates:

Figure 4.2: Graph of the exponential function with rule f(x) = 2x

f′ x( ) f x h+( )n xn–
h

----------------------------------
h 0→
lim=

xn n

n 1–⎝ ⎠
⎛ ⎞ xn 1– h

n

n 2–⎝ ⎠
⎛ ⎞ xn 2– h2 … n

0⎝ ⎠
⎛ ⎞ hn xn–+ + + +

h
-------------------------------------------------------------------------------------------------------------------------------------

h 0→
lim=

n

n 1–⎝ ⎠
⎛ ⎞ xn 1– h

n

n 2–⎝ ⎠
⎛ ⎞ xn 2– h2 … n

0⎝ ⎠
⎛ ⎞ hn+ + +

h
-------------------------------------------------------------------------------------------------------------

h 0→
lim=

nxn 1– n

n 2–⎝ ⎠
⎛ ⎞ xn 2– h …hn 1–+ +⎝ ⎠

⎛ ⎞
h 0→
lim=
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Hence, this function is not a solution to the Cauchy equation. 
However, it is the case that 8 × 16 = 23 × 24 = 23 + 4 = 27 =128, as 

this is an instance of the general law of exponents ax × ay = ax+ y for 
the assignment of values a = 2, x = 3 and y = 4. 

The corresponding functional equation, for which exponential 
functions, f: R → R, f(x) = ax, where a ∈ R+, provide a solution is 
f(x + y) = f(x) × f(y). That is, if f: R → R, f(x) = ax, where a ∈ R+, 
then f(x + y) = ax + y = ax × ay = f(x) × f(y). 

Exponential functions are therefore solutions to the functional 
equation f(x + y) = f(x) × f(y). The exponential function f: R → R, 
f(x) = ex is also solution to the functional equation f(x) = f′(x). 

There is an isomorphism, which is Greek for same (iso) form 
(morphism), of mathematical structures between the multiplicative 
group of exponential terms to a given base, that is, the structure 
comprising {ax, a ∈ (1, ∞) and x ∈ R under the operation ‘×’}; and the 
additive group of logarithmic terms to the same base, that is, the 
structure comprising {loga(x), a ∈ (1, ∞) and x ∈ R+ under the 
operation ‘+’}. 

Key properties of this isomorphism are summarised in Table 4.1.

The last row is a statement of the functional equation that defines a pair 
of inverse functions, the graphs of these two function exhibit reflectional 
symmetry in the line y = x, as shown in Figure 4.3 for the particular case 
where a = 2.

Table 4.1: Summary of isomorphism between exponential and logarithmic 
structures

Exponential structure: f(x) = ax Logarithmic structure: g(x) = loga(x)

Natural domain = R, range = R+ Natural domain = R+, range = R

y = ax ⇔ x = loga(y) y = loga(x) ⇔ x = ay

a0 = 1 ⇔ f(0) = 1 loga(1) = 0 ⇔ g(1) = 0

f(x + y) = f(x) × f(y) f(x × y) = f(x) + f(y)

f(g(x)) = x g(f(x)) = x
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Historically, this relationship was used to carry out computations 
before efficient mechanical and electronic calculators became widely 
available. The steps in the calculation require a mapping from the 
multiplicative structure to the additive structure via the 1–1 mapping of 
the logarithmic function (taking logarithms) carrying out addition 
(of exponents = logarithms), then applying the inverse mapping of 
exponentiation (taking anti-logarithms). This is illustrated in Figure 4.4, 
working in base 10.

The ‘addition’ occurs in the second last step where:

log10(27) + log10(534) = 1.431363764 + 2.727541257 
= 4.158905021 = log10(27 × 534)

Figure 4.3: Graph of the inverse exponential-logarithmic pair of functions, base a = 2 

Figure 4.4: Example of multiplication using logarithms

-4 -2 2 4

-4

-3

-2

-1
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27 ×

×
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=101.431363764

(log function) (log function)
534

102.727541257

14418
(exponential
function)

104.158905021
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F U N C T I O N A L  E Q U A T I O N S  A N D  A L G E B R A I C  
E Q U I V A L E N C E

Various ‘rules of algebra’ that students encounter in their mathematical 
studies, can be considered in terms of relationships between f(x + y), f(x – y), 

f(x × y) or  and f(x) and f(y) for well-known functions such as power 

functions, exponential functions, logarithmic functions and circular functions. 
Each of these functions can be related to a set of functional equations for which 
they are a solution. The preceding example linked exponential and logarithm 
functions to particular functional equations that they satisfy: the exponent law 

ax + y = ax × ay and the logarithm law loga(xy) = loga(x) + loga(y).The following 
examples look at several other sorts of functional equations that can be used to 
describe algebraic equivalence with respect to various functions.

E X A M P L E  4 . 4

Consider the ‘surd rules of algebra’ for non-negative real numbers x and 
y:

and  where y > 0

and

as indicated by the counter-examples:

but

and

but

In terms of the function f: [0, ∞ ) → R, where f(x) = , the first two 
of these correspond to this function being a solution of the functional 
equations:

f(x × y) = f(x) × f(y) and 

but not a solution of the functional equations:
f(x + y) = f(x) + f(y) and f(x – y) = f(x) – f(y).

However, it should also be noted that where x is a non-zero 

real number, and h(x) = | x | are also solutions (or not) to the same set of 

f x
y
---⎝ ⎠

⎛ ⎞

xy x y=
x
y
--- x

y
-------=

x y+ x y+≠ x y– x y–≠

16 9+ 5= 16 9+ 4 3+ 7= =

16 9– 7= 2.646≈ 16 9– 4 3– 1= =

x

f x
y
---⎝ ⎠

⎛ ⎞ f x( )
f y( )
----------=

g x( ) 1
x
---=
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functional equations, with suitable restriction to ensure there is a non-
zero divisor in the second functional equation. Indeed, if x is a positive 

real number, then f(x) = xq, where q is a non-zero rational number, is a 
solution to the first two functional equations, but not the second two 
functional equations.

If different combinations of functional terms are ‘mixed and matched’ 
there are also the following solutions to particular functional equations 
that characterise the other ‘exponent and logarithm’ laws:

the exponent law

the logarithm law

E X A M P L E  4 . 5

For the basic circular functions sin(x), cos(x) and tan(x), it is certainly the 
case that these functions are not solutions to the Cauchy equation. For 
example, in the case of the sine function, using the well-known exact 

value , it is clear that sin(x + y ) ≠ sin(x) + sin(y) since 

 but .

Similarly, counter-examples using exact values can be found for the 
cosine and tangent functions with respect to this and other functional 

equations such as f(x × y) = f(x) × f(y) and .

For example,  and . This can 

be readily determined from a knowledge of exact values for these circular 
functions, or inspection of the corresponding graphs.

There are, however, well-known algebraic equivalences (usually 
called trigonometric identities) for these circular functions. These can 
be obtained in several ways, and in the following discussion matrices are 
used to simultaneously obtain expressions for f(x + y) when f is the sine 
or cosine function. These can be subsequently used to obtain the relevant 
functional equation for tan (x + y) from the definition:

f x y–( ) f x( )
f y( )
----------= ax y– ax

ay
-----=

f x
y
---⎝ ⎠

⎛ ⎞ f x( ) f y( )–= loga
x
y
---⎝ ⎠

⎛ ⎞ loga x( ) loga y( )–=

π
2
---⎝ ⎠

⎛ ⎞sin

π
2
---

π
2
---+⎝ ⎠

⎛ ⎞sin π( )sin 0= = π
2
---⎝ ⎠

⎛ ⎞sin π
2
---⎝ ⎠

⎛ ⎞sin+ 1 1+ 2= =

f x
y
---⎝ ⎠

⎛ ⎞ f x( )
f y( )
----------=

4π( )cos 4( )cos π( )cos≠ π
3
---⎝ ⎠

⎛ ⎞tan π( )tan
3( )tan

-----------------≠
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If the images of the points (1, 0) and (0, 1) under a given matrix 
transformation M of the cartesian plane are known, then the matrix is 
completely determined. This is because these two points form the basis of 
the vector space for all coordinate vectors in the plane as 
(x, y) = x(1, 0) + y(0, 1) under scalar multiplication and vector addition 
as shown, for example for (5, 3) in Figure 4.5.

Using matrix notation and column vectors, if the images of (1, 0) and 
(0,1) are respectively (a, c) and (b, d) then:

and

Combining these two matrix equations into a single matrix equation 
gives:

Consider the following diagram where the unit line segments from the 
origin with endpoints at (1, 0) and (0, 1) respectively are both rotated 
through an angle θ anticlockwise, as shown in Figure 4.6.

Figure 4.5: Diagram of coordinate vector in the plane as (5, 3) = 5(1, 0) + 3(0, 1)

x y+( )tan x y+( )sin
x y+( )cos

--------------------------=

+ + + + + + +

+ + + + + + +

+ + + + + + +

+ + + + + + +

(0, 1)

(1, 0)

(5, 3) = 5(1, 0) + 3(0, 1)

M 1
0

a
c

= M 1
0

b
d

=

M 1 0
0 1

a b
c d

=
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If a rotation anticlockwise through an angle θ about the origin (0, 0) is 
designated by Rθ, then Figure 4.6 and basic trigonometry of right-angled 
triangles shows that:

and

In matrix form this is equivalent to:

How are the compound angle formulas for sine and for cosine 
obtained from this? Simply by observing that rotation about the origin 
through an angle of θ + ϕ can be obtained in two equivalent ways—a 
single rotation through θ + ϕ or a rotation through θ followed by a 
rotation through ϕ. 

The former is given by the matrix for Rθ + ϕ while the latter is given by 
the product Rϕ Rθ. Thus, in matrix form:

while

Figure 4.6: Rotation of (1, 0) and (0, 1) through angle of θ anticlockwise

y

x

(–sin(θ), cos(θ))

1

1 θ

(cos(θ), sin(θ))

θ

θ

Rθ
1
0

θ( )cos
θ( )sin

= Rθ
0
1

θ( )sin–

θ( )cos
=

Rθ
1 0
0 1

Rθ
θ( )cos θ( )sin–

θ( )sin θ( )cos
= =

Rθ ϕ+
θ ϕ+( )   cos θ ϕ+( )sin–

θ ϕ+( )   sin θ ϕ+( )cos
=
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So, by the equality of matrices, which requires corresponding elements in
the arrays to be the same:

 sin(θ + ϕ) = sin(θ)cos(ϕ) + cos(θ)sin(ϕ) 

and

cos(θ + ϕ) = cos(θ)cos(ϕ) – sin(θ)sin (ϕ)

If the identity cos(θ) = sin(θ + ) is also used, then the identity for 
sin(θ + ϕ) can be expressed using the functional equation:

f(x + y) = f(x) cos(y)+ cos(x) f(y) = f(x) f(y + ) + f(x + ) f(y) 

Similar expressions can be obtained for cosine and tangent using 
symmetry properties of these circular functions.

S U M M A R Y

• The functional equation f(x + y) = f(x) + f(y) is called the Cauchy 
equation and has the solution f: R → R, f(x) = ax, where a is a 
real valued constant, for real differentiable functions of a single 
variable.

• Most real continuous functions are not solutions of the functional 
equations f(x + y) = f(x) + f(y) and f(x – y) = f(x) – f(y), the 
assumption of this linearity condition is a common error in algebraic 
manipulations. 

• (x + y)n ≠ xn + yn for n ∈ N and n > 1
• ax + y ≠ ax + ay

• loga(x + y) ≠ loga(x) + loga(y)
• sin(x + y) ≠ sin(x) + sin(y) and similarly for the cosine and tangent 

functions
• The linearity property does apply in several contexts, such as 

differentiation and integration of real functions, linear (affine) 
transformations of the cartesian plane, and expectation and variance 
of the sum of two independent random variables.

RϕRθ
ϕ( )cos ϕ( )sin–

ϕ( )sin ϕ( )cos
θ( )cos θ( )sin–

θ( )sin θ( )cos
=

ϕ( )cos θ( )cos ϕ( )sin θ( )sin–    θ( )cos θ( )sin–× ϕ( )sin θ( )cos–

ϕ( )sin θ( )cos ϕ( )cos θ( )sin+ ϕ( ) θ( )sinsin– ϕ( )cos θ( )cos+
=

π
2
---

π
2
---

π
2
---
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• Functions of the form f: R → R, f(x) = xq (power functions, q ≠ 1 and 
q ∈ Q), or the form f: R → R, f(x) = ax, where a ∈ R+ (exponential 
functions) are not solutions of the Cauchy equation.

• Power function of the form f: R +→ R, f(x) = xq where q ∈ Q are 
solutions of the functional equations f(x × y) = f(x) × f(y) and 

.

• Exponential functions of the form f: R → R, f(x) = ax, where a ∈ R+ 
are solutions of the functional equations f(x + y) = f(x) × f(y) and 

f(x – y) = .

• Logarithmic functions of the form f: R +→ R, f(x) = loga(x) where 

a ∈ R+ are solutions of the functional equations f(x ×y) = f(x) + f(y) 

and .

• Circular functions satisfy functional equations corresponding to 
trigonometric identities (algebraic equivalences) for sin(x + y), 
cos(x + y), tan(x + y) and related forms.

S T U D E N T  A C T I V I T Y  4 . 1  

Use tables, graphs or algebraic reasoning to decide whether or not each of the following 
functions is a solution to the functional equation f(x + y) = f(x) + f(y).

a f(x) = x
b f(x) = 2x2

c f(x) = x3

d f(x) = x4

e f(x) = 3

f f(x) = 
g f (x) = sin(x)
h f(x) = cos(x)

i f(x) = 

f x
y
---⎝ ⎠

⎛ ⎞ f x( )
f y( )
----------=

f x
y
---⎝ ⎠

⎛ ⎞

f x
y
---⎝ ⎠

⎛ ⎞ f x( ) f y( )–=

x

1
x-----
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j f(x) = 

k f(x) = ex

m f(x) = log10(x)
n f(x) = |x |

S T U D E N T  A C T I V I T Y  4 . 2

a Show that the function f: R → R, f(x) = ax is a solution of the functional equation 
f(x – y) = f(x) – f(y), and provide a graphical interpretation of this result. 

b Compare this with the evaluation and graphical interpretation of f(x) – f(y) for f: R → R, 
f(x) = ax + b. (Hint: think of x as x1 and y as x2 in the usual calculation of gradient of a 
non-vertical straight line from the coordinates of two distinct points.)

S T U D E N T  A C T I V I T Y  4 . 3

a Let g: R\{0}→ R, . Show that there are no integer values of x and y for 
which g(x + y) = g(x) + g(y).

b Find a suitable expression for g(x + y) in terms of g(x) and g(y).

S T U D E N T  A C T I V I T Y  4 . 4

Identify differentiable real functions of a single variable that are solutions to the following 
functional equations:

a

b f(x + y) + f(x – y) = 2f(x) × f(y)
c f(x + y) × f(x – y) = f(x)2 – f(y)2

Find a functional equation for which the following are a solution:
d f(x) = tan(x)
e f(x) = a × ecx2

S T U D E N T  A C T I V I T Y  4 . 1  ( C O N T I N U E D )

1

x2---------

g x( ) 1
x-----=

f x y+
2--------------------⎝ ⎠

⎛ ⎞ f x( ) f y( )+
2------------------------------------------=
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S T U D E N T  A C T I V I T Y  4 . 5

Show that the function f: R+ → R, f(x) = xq, where q is a rational number, satisfies the functional 
equations:

f(x × y) = f(x) × f(y) and 

but not the functional equations:
f(x + y) = f(x) + f(y) and f(x – y) = f(x) – f(y).

S T U D E N T  A C T I V I T Y  4 . 6  

Investigate the historical development of natural logarithms, and related functional equations. 
How is the logarithm function defined in modern mathematics?

S T U D E N T  A C T I V I T Y  4 . 7

a Let X and Y be 2 × 2 matrices that have inverses under matrix multiplication. If 
X2 = X × X, show that, in general (X × Y)2 ≠ X2 × Y2 but that (X × Y)–1 = Y–1 × X–1. 
For what 2 × 2 matrices does (X × Y)2 equal X2 × Y2?

b Show that for any linear transformation of the plane, a pair of parallel lines will be 
mapped onto an image pair of parallel lines.

S T U D E N T  A C T I V I T Y  4 . 8

The structure for differentiation of functions of a real variable is based on the properties of the 
derivative that for two differentiable real functions f and g:

• D[f(x) + g(x)] = D[f(x)] + D[g(x)] and
• D[f(x) × g(x)] = f(x) × D[g(x)] + g(x) × D[f(x)]

Explain why it is not true that D[f(x) × g(x)] = D[f(x)] × D[g(x)] or .

S T U D E N T  A C T I V I T Y  4 . 9  

Use the equivalences:
sin(θ + ϕ) = sin(θ)cos(ϕ) + cos(θ)sin(ϕ) 

and 
cos(θ + ϕ) = cos(θ)cos(ϕ) – sin(θ)sin(ϕ)

f x
y----⎝ ⎠

⎛ ⎞ f x( )
f y( )---------------=

D f x( )
g x( )------------------

D f x( )[ ]
D g x( )[ ]---------------------------------=
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to obtain equivalences for:
a tan(θ + ϕ) 
b sin(2θ), cos(2θ) and tan(2θ)
c sin(θ – ϕ), cos(θ – ϕ) and tan(θ – ϕ)

Represent each of these identities using a suitable functional equation.

S T U D E N T  A C T I V I T Y  4 . 9  ( C O N T I N U E D )
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C H A P T E R  5
D I F F E R E N C E  E Q U A T I O N S

Since the 1980s, difference equations, or recurrence relations, have 
increasingly become part of the senior secondary mathematics curriculum 
where there is a discrete mathematics emphasis, often in conjunction with 
financial or business applications. Difference equations are a particular kind of 
functional equation where the independent variable takes natural number 
values, and where the dependent variable forms a countable sequence of values 
or terms as they are commonly called. Thus, the value of an investment over a 
set of fixed time intervals would typically be described by some sort of 
difference equation or recurrence relation. These are characterised by the 
property that a given value is computed from a previous value or values in the 
sequence. 

This process typically requires the ability not only to carry out lots of 
computations efficiently, but also to remember the results of previous 
calculations for use in a current calculation, and so on. Hand-held technology 
such as graphics or CAS calculators, or computer-based technology such as 
spreadsheets and computer algebra systems, are well suited to the analysis and 
solution of difference equations or recurrence relations, and the representation 
of corresponding sequences by lists, tables and graphs. More broadly, the 
notion of recursion is closely related to the development of number theory, 
computable functions, and its application to computation in general (see 
Enderton 1979; Mendelson 1979; Cohen 2002). Indeed, some form of recursion 
or iteration is at the heart of most forms of practical computation carried out 
by technology.

More formally, functional equations that have solutions which are 
functions with the domain N+ = {1, 2, 3, … } are called difference equations 
or recurrence relations. If f is such a function, then the list of the range values 
of the function {f(1), f(2), f(3), f(4), … } is called a sequence, and f(n) is referred 
to as the nth term of the sequence. For difference or recursion equations, a 
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given term is defined in relation to the previous term or terms, hence 
the name ‘recursion’, from the Latin recurso—to run back. Thus, a solution 
to a functional equation that is a difference equation is a function f, with 
natural domain, N+, and which generates a sequence of values 
{ f(1), f(2), f(3), f(4), … } that matches a given sequence. An extensive 
range of applications of sequences generated by solution functions to 
difference equations, in particular financial applications such as annuities, 
loan amortisation and saving with a fixed periodic investment, can be 
found in Hodgson and Leigh-Lancaster (1990).

Two well-known types of sequences that students typically meet in their 
senior secondary mathematics studies are arithmetic and geometric sequences. 
Indeed, their work on linear and exponential functions is, in many respects, a 
study of these functions on an integer subset of their real number maximal 
domain, with continuity implied by the use of graphical representation using 
lines and smooth curves. Arithmetic and geometric sequences are special cases 
of first order linear difference equations, that is, a given term is described in 
relation to its previous term only and that relation is linear. 

Several second order difference equations that students may also come 
across are the difference equations that lead to quadratic polynomial functions 
(through difference tables with a constant second difference, a linear second 
order difference equation), Fibonacci sequences (also a linear second order 
difference equation) where the logistic equation is a non-linear first order 
difference equation.

A R I T H M E T I C  S E Q U E N C E S

The sequence S = {2, 6, 10, 14, …} is an arithmetic sequence, specified 
completely by the solution to the functional equation f(x + 1) = f(x) + 4, over 
domain N+, that satisfies the initial condition f(1) = 2. The value 
f(x + 1) – f(x) = 4 is called the common difference of the sequence, while 
f(1) = 2 is said to be the first term. When the natural domain is known to be N+, 
the independent variable is usually designated by n rather than x. 
The sequence is generated as follows:

f(1) = 2
f(2) = f(1) + 4 = 2 + 4 = 6
f(3) = f(2) + 4 = 6 + 4 = 10
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f(4) = f(3) + 4 = 10 + 4 = 14

. .

. .

. .

and so on.

 Now in this case it is not too difficult to see that an explicit formula for f(n) 
can be determined, since this is effectively a linear function with domain N. 
Indeed, f(n) = 2 + (n – 1) × 4 = 4n – 2, where n = 1, 2, 3, …

More generally, if the initial condition is f(1) = a and f(n + 1) – f(n) = d, then 
the explicit formula for f(n) will be f(n) = a + (n – 1) × d = dn – d + a, where 
n = 1, 2 … The corresponding sequence then becomes 
{a, a + d, a +2d, a +3d, a + 4d, … }.

The same type of sequence can also be generated by repeated composition, 
or nesting of a function f, starting from the initial evaluation of a given, or 
fixed, point. Thus, starting with a fixed point x = a, the sequence {a, f(a), f(f(a)), 
f(f(f(a))), f(f(f(f(a))))) …} is generated. This process is also called fixed point 
iteration. Some authors prefer to start with n = 0, others with n = 1, depending 
on whether they wish to emphasise the first value of n corresponding to the 
first term in the sequence or the first application of the recursion process. 

The arithmetic sequence S = {2, 6, 10, 14, …} is generated by fixed point 
iteration as follows: let a = 2, and f(n) = n + 4. Then successive iterations give:

a = 2

f(a) = 2 + 4 = 6

f(f(a)) = 2 + 4 + 4 = 10

f(f(f(a))) = 2 + 4 + 4 + 4 = 14

. .

. .

. .

and so on, as previously.

CAS such as Mathematica are well suited to this type of computation, and 
have corresponding functionality built in, in this case in the form of the 
functions Nest and NestList. For an arbitrary function, f, and fixed point, 
a, nesting 5 times gives:

Nest[f,a,5]

f[f[f[f[f[a]]]]]
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while nest-listing gives the sequence of all the previous fixed point iterations as 
well:

for the sequence S this has the particular form:

which can then be graphed as a plot of this list of values as shown in Figure 5.1:

The graph of this function is clearly linear, as would be expected for an 
arithmetic sequence. If the function is left arbitrary, it is not possible to 
produce a corresponding graph. The general arithmetic sequence can be 
obtained by defining f(n) = n + d, and using f(1) = a as the fixed point:

The constant sequence {c, c, c … }, where c ∈ R, is a special case of an 
arithmetic sequence where f(0) = c and d = 0.

G E O M E T R I C  S E Q U E N C E S

The sequence G = {2, 6, 18, 54, …} is a geometric sequence, specified 
completely by the solution to the functional equation f(x + 1) = 3 × f(x), over 

domain N+, and which satisfies the initial condition f(1) = 2. Again, using n to 

Figure 5.1: Plot of the first six values of sequence S

NestList[f,a,5]

{a,f[a],f[f[a]],f[f[f[a]]],f[[f[f[f[a]]]],f[f[f[f[f[a]]]]]}

f[n_]:= n + 4

{2,6,10,14,18,22}

ListPlot[NestList[f,2,5],PlotRange {0,30}]:→

2 3 4 5 6

5

10

15

20

25

30

f n n d[ _]:= +
{a,a + d,a + 2d,a + 3d,a + 4d,a + 5d}
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designate the independent variable of a sequence, the value  = 3 is 

called the common ratio of the sequence, while f(1) = 2 is said to be the first 
term. The sequence is generated as follows:

f(1) =  2
f(2) = f(1) × 3 = 2 × 3 =  6
f(3) = f(2) × 3 = 6 × 3 = 18
f(4) = f(3) × 3 = 10 × 3 = 54
. .
. .
. .

and so on.
 Thus, while both the previous arithmetic sequence and this geometric 

sequence have the same first two terms, all the other terms will be different. 
They are, in general, different types of sequences. In this case it is not too 
difficult to see that an explicit formula for f(n) can be determined, since this is 
effectively an exponential function with domain N+. 

Indeed, f(n) = 2 × 3n – 1 =  × 3n, where n = 1, 2, 3 …

 More generally, if the initial condition is f(1) = a and  = r then the 

explicit formula for f(n) will be f(n) = a × rn – 1 =  × rn, where n = 1, 2, 3 … 

The corresponding sequence then becomes { a, ar, ar2, ar3 … }.
The same type of sequence can similarly also be generated by repeated 

composition, or nesting of a function f, staring from the initial evaluation of a 
given, or fixed point. Thus, starting with a fixed point x = a, the sequence 
{a, f(a), f(f(a)), f(f(f(a))), f(f(f(f(a))))) …} is generated, except that the form of 
the rule for f is different for a geometric sequence. This process is again called 
fixed point iteration.

For example, the geometric sequence G = {2, 6, 18, 54, …} is generated by 
fixed point iteration as follows. Let a = 2, and f(n) = 3n. Then successive 
iterations give:

a = 2
f(a) = 2 × 3 = 6
f(f(a)) = 2 × 3 × 3 = 18
f(f(f(a))) = 2 × 3 × 3 × 3 = 54
. .
. .
. .

and so on, as previously. Using the CAS Mathematica, the sequence is 
produced by listing the iterates:

f n 1+( )
f n( )

-------------------

2
3
---

f n 1+( )
f n( )

-------------------

a
r
---
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and can be graphed as shown in Figure 5.2.

Again, if the function is left arbitrary, it is not possible to produce a 
corresponding graph; however, the general list of iterates for an arbitrary 
function is given. The general geometric sequence can be obtained by defining 
f(n) = rn , and using f(1) = a as the fixed point:

The behaviour of the sequence can be described in terms of the value of r, as 
summarised in Table 5.1. 

Figure 5.2: Plot of the first six values of sequence G

Table 5.1: Behaviour of geometric sequence in terms of the value of r 

Value of r Behaviour of sequence

r < –1 oscillating and diverging

r = –1 oscillating between two constant values: f(1) = a and –f(1) = –a

–1 < r < 0 oscillating and converging to zero

r = 0 first term f(1) = a then a constant sequence of zero

0 < r < 1 exponential decay converging to zero

r = 1 constant sequence of f(1) = a

r > 1 diverging, exponential growth

NestList[f,2,5]

{2,6,18,54,162,486}

ListPlot[NestList[f,2,5],PlotRange {0,500}]→ ::

2 3 4 5 6

100

200

300

400

500

f n rn

NestList f a

[ _]:

[ , , ]

=
5

{a,ar,ar ,ar ,ar ,a2 3 4 rr }5
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Arithmetic sequences and geometric sequences are subsets of the 
corresponding continuous linear and exponential functions respectively. Thus, 
they will also be solutions to the functional equations that their continuous 
analogues satisfy. 

F I R S T  O R D E R  L I N E A R  D I F F E R E N C E  E Q U A T I O N S

A first order linear difference equation is a functional equation of the form:

f(x + 1) = af(x) + b where x ∈ N+ and a, b ∈ R

For example, consider the first order linear difference equation 
f(n + 1) = 0.5 f(n) + 1, with first term f(1) = 3. The corresponding sequence of 
values can also be generated by repeated composition, or nesting of a function 
f starting from the initial value of a given, or fixed point, in this case f(1) = 3 to 
obtain {a, f(a), f(f(a)), f(f(f(a))), f(f(f(f(a))))) …}.

The following computation using Mathematica evaluates this sequence for 
several iterations:

The graph of this function is shown in Figure 5.3.

Figure 5.3: Plot of the first eleven values of f(n + 1) = 0.5 f(n) + 1 where f (1) = 3

f[n_]:= 0.5n + 1

NestList[f,3,10]

{3,2.5,2.25,2.1125,2.0625,2.03125,2.01563,

2.00781,2.00391,,2.00195,2.00098}

4 6 8 10

0.5

1

1.5

2

2.5

3

3.5
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The explicit solution to the first order linear difference equation 
f(n + 1) = 0.5 f(n) + 1, f(1) = 3 can be obtained using CAS:

The corresponding general case solution is:

This result can be derived by series analysis, using some algebraic 
manipulation and the sum of a geometric series. Assume f(1) is given and 
f(n + 1) = af(n) + b, then:

f(2) = af(1) + b
f(3) = af(2) + b = a( af(1) + b) + b = a2f(1) + ab + b
f(4) = af(3) + b = a( a2f(1) + ab + b) + b = a3f(1) + a2b + ab + b
.
.
.
f(n) = an – 1 f(1) + (b + ab + a2b + … + an – 2b)

The term in brackets is a geometric sequence with first term, b, common ratio, 
a, and n – 1 terms. Using the formula for the sum of the first n terms of a 
geometric sequence this becomes:

, where a ≠ 1

Thus, the general solution is f(n) = an – 1 f(1) + , where a ≠ 1.

The general first order linear difference equation f(n + 1) = af(n) + b, where 
n ∈ N+ and a, b ∈ R incorporates the cases of:
• the constant sequence { f(1), b, b, b …} where a = 0 and f(n) = b: for example, 

if f(1) = –3 and f(n + 1) = 0 × f(n) + 7, then the sequence generated is 
{–3, 7, 7, 7 … }

• the arithmetic sequence { f(1), f(1) + d, f(1) + 2d, f(1) + 3d … } where a = 1 
and b = d: for example, if f(1) = –3 and f(n + 1) = 1 × f(n) + 7, then the 
sequence generated is {–3, 4, 11 …}

RSolve f n f n f f n n[{ [ ] / [ ] , [ ] }, [ ], ]== ==1 2 1 1 1 3− +
{{{f[n] 2If[n 1,-1,-2 ,0]}}-n→ ≥

RSolve f n af n b f k f n n[{ [ ] [ ] , [ ] }, [ ], ]== ==− +1 1

f[n]] If n 1,
-ab + a (b - k)+ a k

(-1 + a)a

n 1+n

→ ≥
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

,0
⎧⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

b an 1– 1–( )
a 1–

-----------------------------

b an 1– 1–( )
a 1–

-----------------------------
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• the geometric sequence { f(1), f(1) × r, f(1) × r2, f(1) × r3 … } where a = r and 
b = 0: for example, if f(1) = –3 and f(n + 1) = 7 × f(n), then the sequence 
generated is {–3, –21, –147 …}

It should be noted that the a used here is not the ‘a’ often used to designate 
the first term of an arithmetic or geometric sequence (this role is played by f(1) 
in the current discussion) but the coefficient of f(n) in the general first order 
linear difference equation f(n + 1) = af(n) + b. 

If f(1) = –3 and the first order linear difference equation is 
f(n + 1) = 7 × f(n) + 7, then the sequence generated is {–3, –14, –98 …} and is 
graphed in Figure 5.4.

The corresponding explicit rule for this function is:

D I F F E R E N C E  T A B L E S  F O R  L I N E A R  A N D  
Q U A D R A T I C  P O L Y N O M I A L  F U N C T I O N S

The linear function f: N → R, f(x) = ax + b is an explicit solution to the 
difference equation where f(x + 1) = f(x) + a and f(0) = b. The rule of the 
explicit solution can be readily obtained using a finite difference table, which 
consists of a sequence of several consecutive values of the function for which a 
corresponding sequence of differences between consecutive values is obtained. 

Figure 5.4: Plot of the first four values of f(n + 1) = 7f(n) + 7 where f(1) = –3

2 3 4 5 6

-1000

-800
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-400

-200

RSolve[{f[n] == 7f[n - 1] + 7,f[1] == -3},f[n],n]

f[nn] If n 1,
1

42
(-49 - 117 ),0n→ ≥

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎪

⎩⎪

⎫
⎬⎬
⎪

⎭⎪
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Consider a table of values for the function f where x = 0, 1, 2, 3, 4 and the 
corresponding differences between consecutive values (that is, the list of first 
differences) as shown in Table 5.2.

The constant first difference implies the function is linear, and its graph 
would have gradient a with y-axis intercept at f(0) = b. The use of such a table 
is well known, for example given the following set of value for x and f(x), and 
calculating the first difference gives:

from which it is readily deduced that the corresponding function would have 
the rule f(x) = –3x + 14.

For a quadratic function f: N  → R, f(x) = ax2 + bx + c the finite difference 
table has a non-constant first difference, but a constant second difference (that 
is, difference of first differences) as shown in Table 5.3.

Table 5.2: First differences for a linear function

x f(x) First difference

0 b

a

1 a + b

a

2 2a + b

a

3 3a + b

a

4 4a + b

x f(x) First difference

0 14

–3

1 11

–3

2 8

–3

3 5

–3

4 2
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Consider any sub-sequence of three consecutive terms 
{ f(n), f(n + 1), f(n + 2)} of any sequence, then the two consecutive first 
differences formed from these are f(n + 2) – f(n + 1) and f(n + 1) – f(n). The 
corresponding second difference is f(n + 2) – f(n + 1) – (f(n + 1) – f(n)) which is 
equal to f(n + 2) – 2 f(n + 1) + f(n). For a quadratic function, the second 
difference is constant and equal to 2a that is:

f(n + 2) – 2 f(n + 1) + f(n) = 2a or f(n + 2) = 2 f(n + 1) – f(n) + k

for some non-zero real constant k. Thus, the quadratic function is a solution to 
this second order linear difference equation.

F I B O N A C C I  S E Q U E N C E S

An important class of sequences that satisfy the functional equation 
f(x + 2) = f(x + 1) + f(x) are the Fibonacci and Lucas sequences, for example, 
{2, 4, 6, 10, 16 …} is a Lucas sequence. This is called a second order difference 
equation, since the next term of the sequence is defined in terms of the 
previous two terms. An alternative form of the functional equation is 
f(x) = f(x – 1) + f(x – 2).

Historically, the Fibonacci sequence {1, 1, 2, 3, 5, 8 …} was studied by 
Leonardo of Pisa, also called Fibonacci (meaning ‘son of Bonaccio’), in his book 
Liber Abaci (1202). Fibonacci was a merchant who had travelled extensively in 
the Orient, and used this sequence to model a population growth problem—
that of pairs of breeding rabbits. The problem can be formulated as follows:

Table 5.3: First and second differences for a quadratic function

x f(x) First difference Second difference

0 c

a + b

1 a + b + c 2a

3a + b

2 4a + 2b + c 2a

5a + b

3 9a + 3b + c 2a

7a + b

4 16a + 4b + c
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Starting with a single pair of fertile rabbits, how many pairs of rabbits will be
produced in a year if each pair gives birth to a new pair of rabbits each
month, a new pair become fertile from the second month, fertile pairs are
always productive and there are no deaths?

The solution to this problem can be obtained by using a tree diagram, labelling 
pairs of rabbits as mature (and hence breeding) or new-born (and hence fertile 
the following month) in each month and recording the results in a table as 
shown in Table 5.4. This is a good activity for students, who are quite likely to 
discover the Fibonacci sequence through this process anyway. 

To see why this sequence satisfies the functional equation 
f(n + 2) = f(n + 1) + f(n), assume that in a given month, n, there are a pairs of 
rabbits (combined mature and new-born), and in the following month, n + 1, 
there are b pairs of rabbits (combined mature and new-born). In the next 
month, n + 2, there will be a + b pairs of rabbits since all the rabbits from 
month n will have produced a pair of offspring, in addition to the b pairs of 
rabbits alive in month n + 1. The new rabbits in month n + 1 will not have 
produced any offspring in month n + 2. The Fibonacci sequence is thus 
specified by:

Table 5.4: The Fibonacci sequence (assuming births of new born pairs on the first day 
of the month)

Month Mature pairs New-born pairs Total pairs

1 1 0 1

2 1 1 2

3 2 1 3

4 3 2 5

5 5 3 8

6 8 5 13

7 13 8 21

8 21 13 34

9 34 21 55

10 55 34 89

11 89 55 144

12 144 89 233

13 233 144 377
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F(1) = 1, F(2) = 1 and F(n + 2) = F(n + 1) + F(n)

Alternatively, the Fibonacci sequence can also be specified by:

F(1) = 0, F(2) = 1 and F(n + 2) = F(n + 1) + F(n)

which describes the sequence of new-born pairs of rabbits, and is the first 
sequence with each term shifted back one, given there are no new-born pairs 
at the start of the first month. A very accessible introduction to Fibonacci 
sequences and their applications can be found in Hammel-Garland Fascinating 
Fibonaccis: Mystery and Magic in Numbers (1987). Technology such as the 
CAS Mathematica can be readily used to generate terms of Fibonacci 
sequences and draw their graphs. The following recursion is different for the 
second order difference equation, since it is not based on iteration of a fixed 
point.

The corresponding graph is shown in Figure 5.5.

The terms of the Fibonacci sequence are called the Fibonacci numbers. Just 
as CAS have built in applications for solving differential equations, they often 
also have similar applications for solving difference equations (recurrence 
relations). Mathematica has the discrete mathematics application RSolve for 
this purpose.

This application can be used to obtain the explicit formula for the Fibonacci 
sequence:

Figure 5.5: Graph of the first few terms of the Fibonacci sequence

f[n_]:= f[n - 1] + f[n - 2];f[0] = f[1] = 1

Table[f[n],{{n,0,10}]

{1,1,2,3,5,8,13,21,34,55,89}
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More generally, if the initial terms of a Fibonacci-type sequence are 
arbitrary integers a and b then this new sequence is called a Lucas sequence and 
is specified by:

f(1) = a f(2) = b and f(n + 2) = f(n + 1) + f(n)

which can also be expressed in terms of the Fibonacci sequence by:

f(n + 2) = bF(n + 1) + aF(n)

A sequence of particular interest is the Lucas sequence {1, 3, 4, 7, 11 …} 
whose terms are called Lucas numbers. Edouard Lucas was a 19th-century 
French mathematician who studied recursion and sequences, and gave the 
Fibonacci sequence its name. The Lucas and Fibonacci numbers are linked by 
the relation L(n) = F(n + 1) + F(n – 1). They are both connected to the golden 

ratio  by the relationship:

Indeed, these connections lead to an explicit (closed form) formula for the 
Fibonacci sequence. 

Consider a line segment AC, with point B on the line segment between 
points A and C such that AB > BC, and AB = 1 as shown in Figure 5.6.

The golden ratio (section or mean), ϕ, is determined by the relation that 
AC : AB = AB : BC. 

It occurs in several contexts in plant biology (usually through spiral 
arrangements of plant segment which are growing or packed together, such as 
in seed-heads) and is considered to correspond to a proportion that human 
beings find aesthetically pleasing in design contexts. Some authors also argue 
that the golden ratio can be found in architecture across cultures throughout 
history; however, like many hypotheses and conjectures, the validity of these 
claims this has been contested in recent analysis and commentary.

Figure 5.6: Geometric definition of the golden ratio
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Let AC = x, then the requirement that AC : AB = AB : BC is equivalent to:

which leads to the quadratic equation:

x2 – x – 1 = 0

with roots  and . It is interesting to note that the sum of these 

two roots is 1, their difference is  and their product is –1. The positive root 
value is assigned to ϕ, consistent with its geometric interpretation of lengths as 
positive quantities. The other (negative) root has the exact value 1 – ϕ. Their 
numerical approximations correct to 3 decimal places are respectively 1.618 
and –0.618.

It may be somewhat surprising to observe that the ratio of consecutive 
Fibonacci numbers F(n + 1): F(n) converges to ϕ as n → ∞. The following list 
shows this ratio for the first 20 values of n, correct to 10 decimal places:

{1.0000000000, 2.0000000000, 1.5000000000, 1.6666666667, 1.6000000000, 
1.6250000000, 1.6153846154, 1.6190476190, 1.6176470588, 1.6181818182, 
1.6179775281, 1.6180555556, 1.6180257511, 1.6180371353, 1.6180327869, 
1.6180344478, 1.6180338134, 1.6180340557, 1.6180339632}

To explain why this is the case, assume the limiting value of this ratio exists 
and is x, then taking the limit as n → ∞ gives :

which yields the same quadratic equation and roots as previously, for the 
limiting value. If this equation is written in the equivalent forms x2 = x + 1 and 

x
1
---

1
x 1–
------------=

1 5–
2

----------------
1 5+

2
----------------

5

x
F n 1+( )

F n( )
--------------------

n ∞→
lim=

F n( ) F n 1–( )+
F n( )

--------------------------------------
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1
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1
1
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xn + 2 = xn + 1 + xn then the functions defined by p(n) = ϕn and q(n) = (1 –ϕ)n as 
well as linear combinations ap(n) + bq(n) of these satisfy the functional 
equation f(n + 2) = f(n + 1) + f(n).

Determining the values of a and b so that the initial conditions for the 
Fibonacci sequence are satisfied gives:

As n becomes increasingly large, the second term tends to zero, so the sequence 

of Fibonacci numbers converges on the nearest integer values of .

The explicit rule for the Fibonacci sequence is a surprise: a formula involving 
powers of surd expressions that yields a positive integer when evaluated. 

It is also possible to use matrices to compute arbitrary sub-sequences of 
length three of the Fibonacci sequence, that is, for a given n, compute the sub-
sequence {F(n – 1), F(n), F(n + 1)}.

Consider the 2 × 2 matrix:

Then the nth power of F is the matrix:

from which the required sub-sequence can be listed. There is a nice 
straightforward proof of this result using mathematical induction. That is:
• show the result is true for the initial value (by inspection or simple calculation)
• show that if it is true for n then it is true for n + 1 (assume it is true for n and 

deduce from this that it is true for n + 1, by using established properties of 
matrices and the Fibonacci sequence)
When n = 1, the sub-sequence generated is {0, 1, 1}, the first three terms of 

the Fibonacci sequence starting from 0.

Assume  then:

F n( ) ϕn
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Hence 

From the recursive definition of the Fibonacci sequence: 
F(n + 2) = F(n + 1) + F(n) and F(n + 1) = F(n ) + F(n - 1), so this is the same as:

as required. The benefit of this approach is that it provides an explicit formula 
that computes the Fibonacci sub-sequences using integers. The following 
shows an implementation of this computation using the CAS Mathematica:
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=
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Various CAS list and data structure manipulation functions could then be used 
to extract the values of the Fibonacci sequence:

F = {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89 …}

Hoggatt (1969) gives an excellent introduction to Fibonacci sequences and 
Lucas numbers, and their relationship to the golden ratio.

T H E  L O G I S T I C  F U N C T I O N

The analysis of population models provides an ideal opportunity for students 
to engage in mathematical analysis, supported by graphical and numerical 
computation, where explicit solutions to the corresponding functional 
equations are not the most suitable form of representation to support such 
analysis. A simple model for population growth is the percentage increase, or 
exponential model. This model applies where there is effectively good access to 
resources, and a population increases over a fixed time interval (such as an 
hour, a year or a generation, depending on the context) by a fixed percentage of 
the previous population. 

Thus, if the fixed percentage increase is 10%, then from the nth time 
interval to the (n + 1)th the population is 100% + 10% =110% of its previous 
value. Since 110% = 1.1 as a decimal, this can be expressed more concisely as a 
recurrence relation, where, if p(n) represents the population at the (beginning 
of the ) nth time interval:

p(n + 1) = 1.1 × p(n) starting from some initial population value p(0)

More generally, for a growth factor r, where r ∈ R and r > 1 then 
p(n + 1) = r × p(n) for exponential growth. 

While the exponential growth model can be used to describe the initial 
stages of growth of many populations, resources are usually not unlimited, and 
there are often other factors which affect the growth of a population. 

A simple modification to the exponential growth model is to make the 
growth factor r a linear function of p(n) such that r = a(b – p(n)). The 
parameter b can be thought of as representing some kind of ideal upper limit 
for a population in the given context, thus p(n) < b, while the parameter a ∈ R+ 
plays a role somewhat like the original constant r in the exponential model. 
In practice, both a and b would be determined using experimental or historical 
data from the context under consideration. 
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This is called the logistic population model, and is a non-linear first order 
difference equation. Clearly, when p(n) is small, r ≈ ab, and growth is almost 
exponential. Conversely, as p(n) → b, then r → 0 and growth effectively ceases. 

A population is defined be stable if the population does not change from one 
time interval to the next time interval. That is, an equilibrium value occurs 
when peq(n + 1) = peq(n), and hence r = 1. 

Now, r = 1 ⇒ a(b – peq(n)) = 1 
⇒ peq(n) = b – 

For example, assume that two breeding pairs of a certain animal are released 
into a new and isolated environment with initially plentiful but ultimately 
limited resources. Initially the population might double each time interval, that 
is r = 2. Suppose that previous data suggests that the environment the animals 
have been released into can support an idealised maximum population of 
around b = 500 animals.

Then the value of a can be determined, since r = a(b – p(n)), the data gives 
2 = a(500 – 4), that is a =  ≈ 0.004. The value for the stable population can 
now be calculated as peq(n) = b –  ≈ 250 animals. This can be checked by 
explicitly generating a sequence of values for this population:

and illustrated by drawing the corresponding population graph as shown in 
Figure 5.7.

Analysis of this type of situation can be carried out more generally by 
taking b to be 1 and restricting p(n) between 0 and 1. Thus p(n) could be 

Figure 5.7: Logistic population model graph
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interpreted as a kind of proportion of an ideal population, with minimum value 
0 and maximum value 1. In this formulation the logistic population difference 
equation model is now of the form p(n + 1) = a(1 – p(n)) p(n) with a > 0 as the 
only parameter, and the behaviour of this system can be explored in terms of 
this parameter. As before, there will be an equilibrium value at 
peq(n) = 1 –  and a > 1 (to ensure p(n) > 0).

For example, suppose p(0) = 0.3 and a = 2.5, then peq(n) = 0.6, as can be seen 
from Figure 5.8.

For a just a little larger than 3, for example a = 3.17, stable oscillations 
occur, as illustrated in Figure 5.9.

And for a about 3.57, chaotic behaviour occurs, as illustrated in Figure 5.10.

Figure 5.8: Logistic population model graph a = 2.5

Figure 5.9: Logistic population model graph a = 3.17
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This behaviour is fascinating for mathematicians since it comes from a 
deterministic model (a non-linear difference equation), but produces 
random-like data (see Potts 1985; Gleick 1987).

Figure 5.10: Logistic population model graph a = 3.57

S U M M A R Y

• A sequence is a function f with domain N+, and is usually described by 
listing its range in natural order {f(1), f(2), f(3), f(4) …}.

• Sequences can be generated either by explicit rule ‘f(n) =’ in terms of 
n, or recursively where f(n + 1) is described in terms of f(n) and 
possibly other preceding terms.

• A difference equation or recurrence relation, is a solution to a 
functional equation over domain N+ that is recursively defined.

• An arithmetic sequence is defined recursively by f(1) = a and 
f(n + 1) = f(n) + d. Its explicit rule form is 
f(n) = a + (n – 1)d = dn + (a – d).

• A geometric sequence is defined recursively by f(1) = a and 
f(n + 1) = r × f(n). Its explicit rule form is f(n) = a × rn – 1 = × rn.

• A first order linear difference equation is defined recursively by 

f(n + 1) = af(n) + b where n ∈ N+ and a, b ∈ R. Its explicit rule form 

is f(n) = an–1 f(1) + , where a ≠ 1.

• The constant sequence is a special case of a first order linear difference 
equation where a = 0; the arithmetic sequence is a special case of a 
first order linear difference equation where a = 1; and the geometric 
sequence is a special case of a first order linear difference equation 
where b = 0.
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• A quadratic function f: N  → R, f(x) = ax2 + bx + c is a solution to the 
second order linear difference equation: f(n + 2) = 2 f(n + 1) – f(n) + k 
where k is the constant second difference from the corresponding 
finite difference table and k = 2a.

• The Fibonacci function f: N  → R,  

 where F(0) = 1 and 

F(1) = 1 is a solution to the difference equation 
f(n + 2) = f(n + 1) + f(n). More general solutions with other initial 
conditions are called Lucas sequences.

• The logistic function f(n + 1) = a(1 – f(n)) f(n) where 0 < f(n) < 1 is an 
example of a first order non-linear difference equation, and is used to 
model various populations. For different values of the parameter a > 0 
it exhibits convergent, oscillating and chaotic behaviour.

S T U D E N T  A C T I V I T Y  5 . 1

For the purposes of determining its length, a spiral wound tape can be thought of as a series of 
concentric circles, with the radii of consecutive circles differing by a fixed amount equal to the 
thickness of the tape. Describe how this can be used to estimate the length of the tape, and 
apply this method to a real roll of tape, such as plastic tape.

S T U D E N T  A C T I V I T Y  5 . 2

A table-tennis ball is dropped from a height of one metre and allowed to bounce repeatedly until it 
stops. If it is assumed that the ball bounces to the same proportion of its previous maximum 
height on each bounce, find a good estimate for the total distance it travels before it comes to 
rest.

S T U D E N T  A C T I V I T Y  5 . 3

As shown in the diagrams below, a triangle has no diagonals, a square has two diagonals and a 
pentagon has five diagonals. 

Find a formula for the number of diagonal of an n-sided polygon.

F n( ) ϕn

5
-------

1 ϕ–( )n

5
--------------------– 1 5+( )

n
1 5–( )

n
–

5( ) 2n×
-----------------------------------------------------= =
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S T U D E N T  A C T I V I T Y  5 . 4

A $50 000 loan is taken out to buy a new family car. If the interest is 16% annually and 
calculated quarterly, what is the fixed amount that needs to be paid each quarter (that is, the 
identical payment made each quarter over the life of the loan) if the loan is to be paid off over 
10 years?

S T U D E N T  A C T I V I T Y  5 . 5

Investigate how the terms of the Fibonacci sequence are related to the coefficients of binomial 
expansion in Pascal’s triangle (Hint: write out Pascal’s triangle as left-justified text, and then draw 
in diagonal lines from the top right down to the bottom left). 

Using 1 cm grid graph paper, for each of the first few terms of the Fibonacci sequence cut
out a square with side length corresponding to that term. Use these to construct a nested
series of rectangles with side lengths corresponding to the values of the first n terms of the
Fibonacci sequence.

S T U D E N T  A C T I V I T Y  5 . 6

Investigate the graphical behaviour of the logistic model difference equation for different values 
of the parameter a, and different initial values of p(0).
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C H A P T E R  6
C U R R I C U L U M  C O N N E C T I O N S

Different school systems and educational jurisdictions have particular features in 
their senior secondary mathematics curricula that have been developed over 
decades, and even centuries in some cases, to meet the historical and contemporary 
educational needs of their cultures and societies. When these curricula are 
reviewed, it often the case that this includes a process of benchmarking with 
respect to corresponding curricula in other systems and jurisdictions. This may be 
in a local, county, state, national or international context. 

Over the past few decades, particularly in conjunction with renewed 
interest in comparative international assessments (such as TIMSS and PISA 
OECD), curriculum benchmarking has been employed extensively by 
educational authorities and ministries. Such benchmarking reveals much that 
is common in curriculum design and purpose in senior secondary mathematics 
courses around the world. Some key design constructs that can are used to 
characterise the nature of senior secondary mathematics courses are:
• content (areas of study, topics, strands)
• aspects of working mathematically (concepts, skills and processes, numerical, 

graphical, analytical, problem-solving, modelling, investigative, 
computation and proof)

• the use of technology, and when it is permitted, required or restricted 
(calculators, spreadsheets, statistical software, dynamic geometry software, 
computer algebra systems)

• the nature of related assessments (examinations, school based and the 
relationship between these)

• the relationship between the final year subjects and previous years in terms 
of the acquisition of important mathematical background (assumed 
knowledge and skills, competencies, prerequisites and the like)

• the amount and nature of prescribed material within the course (completely 
prescribed, unitised, modularised, core plus options)
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• the amount of in-class (prescribed) and out-of-class (advised) time that 
students are expected to spend on completion of the course 

In broad terms, it is possible to characterise four main sorts of senior secondary 
mathematics courses.

Type 1

Courses designed to consolidate and develop the foundation and numeracy 
skills of students with respect to the practical application of mathematics in 
other areas of study. These often have a thematic basis for course 
implementation.

Type 2

Courses designed to provide a general mathematical background for students 
proceeding to employment or further study with a numerical emphasis, and 
likely to draw strongly on data analysis and discrete mathematics. Such 
courses typically do not contain any calculus material, or only basic calculus 
material, related to the application of average and instantaneous rates of 
change. They may include, for example, business-related mathematics, linear 
programming, network theory, sequences, series and difference equations, 
practical applications of matrices and the like. 

Type 3

Courses designed to provide a sound foundation in function, coordinate 
geometry, algebra, calculus and possibly probability with an analytical 
emphasis. These courses develop mathematical content to support further 
studies in mathematics, the sciences and sometimes economics.

Type 4

Courses designed to provide an advanced or specialist background in 
mathematics. These courses have a strong analytical emphasis and often 
incorporate a focus on mathematical proof. They typically include complex 
numbers, vectors, theoretical applications of matrices (for example 
transformations of the plane), higher level calculus (integration techniques, 
differential equations), kinematics and dynamics. In many cases Type 4 courses 
assume that students have previous or concurrent enrolment in a Type 3 course, 
or subsume them.

Table 6.1 provides a mapping in terms of curriculum connections between the 
chapters of this book, the four types of course identified above, and the courses 
currently (2005) offered in various Australian states and territories. As this 
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book is a teacher resource, these connections are with respect to the usefulness 
of material from the chapters in terms of mathematical background of 
relevance, rather than direct mapping to curriculum content, or syllabi, in a 
particular state or territory.

Table 6.2 provides a mapping in terms of curriculum connections between 
the chapters of this book, the four types of course identified above, and some of 
the courses currently (2005) offered in various English-speaking jurisdictions 
from around the world. Again, as this book is a teacher resource, these 
connections from the usefulness of material from the chapters in terms of 
mathematical background of relevance, rather than direct mapping to 
curriculum content, or syllabuses, in a particular jurisdiction.

Table 6.1: Curriculum connections for senior secondary final year mathematics 
courses in Australia

State or territory Type of course Relevant chapters

Victoria

2: Further Mathematics 5

3: Mathematical Methods/ Mathematical Methods(CAS) 1, 2, 3 and 4

4: Specialist Mathematics 1, 2, 3 and 4

New South Wales

2: General Mathematics 5

3: Mathematics and Mathematics Extension 1 1, 2, 3 and 4

4: Mathematics Extension 2 1, 2, 3 and 4

Queensland

2: Mathematics A 5

3: Mathematics B 1, 2, 3 and 4

4: Mathematics C 1, 2, 3 and 4

South Australia/
Northern Territory

2: Mathematical Applications 5

3: Mathematical Methods/Mathematical Studies 1, 2, 3 and 4

4: Specialist Mathematics 1, 2, 3 and 4

Western Australia

2: Discrete Mathematics 5

3: Applicable Mathematics 1, 2, 3 and 4

4: Calculus 1, 2, 3 and 4

Tasmania

2: Mathematics Applied 5

3: Mathematics Methods 1, 2, 3 and 4

4: Mathematics Specialised 1, 2, 3 and 4
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Content from the chapters of the book may be mapped explicitly to topics 
within particular courses, and teachers will perhaps find it useful to informally 
make these more specific connections in terms of their intended 
implementation of a given course of interest to them. 

References

The following are the 2005 website addresses of Australian state and territory 
curriculum and assessment authorities, boards and councils. These include 
various teacher reference and support materials for curriculum and 
assessment.

The Senior Secondary Assessment Board of South Australia (SSABSA)
http://www.ssabsa.sa.edu.au/ 

The Victorian Curriculum and Assessment Authority (VCAA)
http://www.vcaa.vic.edu.au/ 

The Tasmanian Qualifications Authority (TQA)
http://www.tqa.tas.gov.au/ 

The Queensland Studies Authority (QSA)
http://www.qsa.qld.edu.au/

The Board of Studies New South Wales (BOS)
http://www.boardofstudies.nsw.edu.au/

The Australian Capital Territory Board of Senior Secondary Studies 
(ACTBSSS)
http://www.decs.act.gov.au/bsss/welcome.htm

Table 6.2: Curriculum connections for senior secondary final year mathematics 
courses in some jurisdictions around the world

State or territory Type of course Relevant chapters

College Board US 3: Advanced Placement Calculus AB 1, 2, 3 and 4

4: Advanced Placement Calculus BC 1, 2, 3 and 4

International Baccalaureate 
Organisation (IBO)

3: Mathematics SL 1, 2, 3 and 4

4: Mathematics HL 1, 2, 3 and 4

UK 3: AS Mathematics 1, 2, 3 and 4

4: Advanced level 1, 2, 3 and 4
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The Curriculum Council Western Australia
http://www.curriculum.wa.edu.au/

The following are the 2005 website addresses of various international and 
overseas curriculum and assessment authorities, boards, councils and 
organisations:

College Board US Advanced Placement (AP) Calculus
http://www.collegeboard.com/student/testing/ap/sub_calab.html?calcab 

International Baccalaureate Organisation (IBO)
http://www.ibo.org/ibo/index.cfm 

Qualifications and Curriculum Authority (QCA) UK
http://www.qca.org.uk/ 

OECD Program for International Student Assessment (PISA)
http://www.pisa.oecd.org 

Trends in International Mathematics and Science Study (TIMSS)
http://nces.ed.gov/timss/ 
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C H A P T E R  7
S O L U T I O N  N O T E S  T O  S T U D E N T  
A C T I V I T I E S

Student activity 1.1

a ‘is older than’ is not an equivalence relation as it is not reflexive, that is, a 
person is not older than themselves (it is not symmetric either, but it is 
transitive)

b ‘≤’ is not an equivalence relation on R as it is not symmetric, that is x ≤ y 
does not imply y ≤ x, for example 3 ≤ 10 does not imply 10 ≤ 3 (it is, 
however, reflexive and transitive)

c ‘⊆’ is not an equivalence relation on subsets of the roman alphabet as it is 
not symmetric, that is x ⊆ y does not imply y ⊆ x, for example, 
{vowels} ⊆ the roman alphabet but the roman alphabet ⊆ {vowels}. 
However, it is reflexive and transitive.

d ‘divides’ on N is not an equivalent relation, as it is not symmetric, that is x 
divides y does not imply y divides x, for example 3 divides 12 does not 
imply 12 divides 3 (however, 3 divides itself, and also divides any number 
that 12 divides, since it is a factor of 12).

Examples of other relations that are equivalence relations are ‘parallel’ and 
‘congruent’ in geometry and ‘equivalent-fraction’ in number.

Student activity 1.2

Students should identify this for the technology they are using. For the CAS 
Mathematica these are summarised in the following table:
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Depending on the context, there are often several ways to implement a 
process using a given technology, and the benefits and limitation of these are 
typically learnt over an extended period use.

Students can compare the relevant approaches for their CAS with those 
listed for Mathematica above. This activity can be used to alert student to 
generic and idiosyncratic aspects of different technologies as they are 
constructed to model and implement various aspects of mathematics.

Student activity 1.3

a ■ = 40. Some students will obtain this value by computation; others will 
note that since 24 is 4 less than 28, then ■ must be 4 more than 36, that is 
■ = 40. 

b ■ = 106. Again either computation or balancing can be used. 
c n – 1 + 7 = n + 5 + 1. Students who use the balancing approach to parts a 

and b will often be able to generalise to this result. Some students will 
identify a value of n or some values of n. 

d Some students will attempt to solve as an equation for n, and reduce to an 
inconsistent form, others will see the equivalent form with the left hand 
side as n – 3 + n – 3 and the right hand side as n – 4 + n – 3, and hence 
detect the inconsistency.

Operation Example

Assign a constant a = 3

Denote a variable Any symbol or expression such as m, x1, yyy or area 
can be used as a variable. The expression x_ denotes a 
free variable in the left-hand side of the definition of a 
function. This means that any numerical value, symbolic 
expression or combination of these can be substituted 
for an occurrence of x in the rule of the function.

Define the rule of a function f[x_]:= x2 - x defines f as a function of the free 
variable x. 

Solve an equation Solve[f[x]== 0, x] solves the given equation for 
x. The use of == does not assign the value 0 to f[x] 
as the expression f[x]= 0 would, but finds the value(s) 
of x which makes the given statement true.

Clearing definitions or assignments Clear[f] and Clear[a] clears the definition of the 
function f and the constant a respectively.

Specifying conditions or constraints f[n_]:=n!/;n >0 defines f as the factorial function, 
given that ‘/;’ n is positive.
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Student activity 1.4

a x = 
b all real values of x, this is an algebraic identity, and reduces to 0 = 0, a 

statement which is always true independent of the value of x.
c no real values of x, this is a mathematical contradiction, and reduces to 

0 = 1, a statement which is always false independent of the value of x.

Student activity 1.5

a If f = g then f(x) = g(x) + c, where c is a real constant implies f′(x) = g′(x). 
That is, if two functions differ by a constant, then their derivatives are 
equal.

b If f = g then ∫ f(x) dx = ∫ g(x) dx + c, where c is a real constant. That is, if 
two functions are equal then their antiderivatives will differ by a constant 
(which may be zero).

c If f = g, ∫ f(x) dx = F(x) and ∫ g(x) dx = G(x) then F(x) = G(x) + c where c is 
an arbitrary real constant. Thus: 

Student activity 1.6

a If the quadratic function is defined by f: R → R, f(x) = ax2 + bx + c, then the 
vertex of its graph occurs when f’(x) = 0 ⇒ 2ax + b = 0 ⇒ x = . To 
establish that this is a line for reflection symmetry, it needs to be shown 
that f(  – h) = f(  + h) for any positive real valued h. This follows readily 
from recognition that the completed square form for f will be 
a(x + ( ))2 + k for some real constant k.

b If the cubic function is defined by f: R → R, f(x) = ax3 + bx2 + cx + d, then 
the point of inflection of its graph occurs when f″(x) = 0 ⇒ 6ax + 2b = 0 
⇒ x = , and lies on the horizontal line y = f( ) = k. The point ( , k) is a 
point of half-turn rotational symmetry for the graph of f if, for any 
positive real valued h, then f(  + h) – k = –( f(  – h) – k). This can be 
shown algebraically by extended manipulation; however, CAS will verify 
the result quickly. Unfortunately, there is no simple argument based on a 
‘completed cube’ form as no such general form exists for cubic polynomial 
functions (the existence of such a form would imply that the graph of any 

7
2
---

f x( ) xd
a

b

∫ F b( ) F a( )– G b( ) c+( ) G a( ) c+( )– G b( ) G a( )–= = =

g x( ) xd
a

b

∫=

b
2a
------–

b–
2a
------

b–
2a
------

b
2a
------

b–
3a
------

b–
3a
------

b–
3a
------

b–
3a
------

b–
3a
------
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cubic function is a simple transformation of the graph of y = x3, which is 
clearly not the case for any cubic function whose graph has a local 
maximum and local minimum, or no stationary point of inflection).

Student activity 2.1

The purpose of this activity is to get students to think about appropriate 
graphing windows when using technology to illustrate the essential features of 
a function through its graph over a suitable subset of its natural domain. Key 
points to consider are:
• self-similarity
• asymptotic behaviour
• symmetry
• whether the function is increasing or decreasing over a given interval or has 

any stationary points

Student activity 2.2

b, d, e, h, j and m.

Student activity 2.3

a, c, g and i 

Student activity 2.4

The constant function f: R → R, f(x) = 0.

Student activity 2.5

a None of the examples used in this chapter are self-inverses.
b The real-valued functions with rules f(x) = x and f(x) =  are self-inverses.

Student activity 2.6

a When the product of two real numbers is equal to their sum, which gives 
pairs (x, y) of the form (x, ) where x is a real numbers and x ≠ 1. For 

integers: x = y = 0 or x = y = 2, or an integer and rational example is 
(–1, ).

b When the square of the product of two real numbers is equal to the sum of 
their squares, which gives pairs (x, y) of the form (x, ± ) where | x | > 1.

Student activity 2.7

Interpret the function in terms of an area relation.

1
x
---

x
x 1–
------------

1
2
---

x

x2 1–
------------------
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Student activity 3.1

a If f(x) = 2x then f(–x) = 2–x =   = ( )x . The graphs of f(x), f(–x), –f(x) and 

–f(–x) are shown below:

Clearly f(x) ≠ f(–x), so f is not an even function (it is not symmetrical by 
reflection in the vertical axis); similarly –f(x) ≠ f(–x), so f is not an odd 
function (it is not symmetrical by half-turn rotation about the origin).

b The graph of the relation y2 = x2 is shown below, and is symmetrical both 
with respect to reflection in the vertical axis and half turn rotation about 
the origin, thus it is both an even and an odd relation.

1

2x
-----

1
2
---

-4 -2 2 4
x

-10

-5

5

10

y
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Student activity 3.2

Only f(x) = 4x is a solution.

Student activity 3.3

Only f(x) = sin(x) and f(x) = cos(x) are solutions.

Student activity 3.4

a f(x) = ±1
b f(x) = x, f(x) = –x, f(x) = , f(x) = 
c f(x) = x, f(x) = –x

Student activity 3.5

The functional equation f(–x) = –f(x) can be seen as a special case of the 
functional equation f(kx) = kf(x) where k = –1. For real-valued differentiable 
functions, f(–x) = –f(x) has all odd functions as solutions, including power 
functions of the form y = kxn where n is an odd integer; while f(kx) = kf(x) has 
functions of the form y = ax, where a is a real constant as solutions.

Student activity 3.6

a Constant: let f(x) = k, where k is a real constant. Then f(x) f(–x) = f(x2) 
implies k2 = k, so f(x) = 0 or f(x) = 1. 

b Linear: let f(x) = ax + b, where a ≠ 0, then f(x) f(–x) = f(x2) implies 
(ax + b)( –ax + b ) = ax2 + b, so equating coefficents gives –a2 = a 
where a ≠ 0 and b2 = b. Hence a = –1 and b = 0 or 1.

-10 -5 5 10
x

-10

-5

5

10

y

1
x
--- 1

x
---–
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c Quadratic: let f(x) = ax2 + bx + c , where a ≠ 0, then f(x) f(–x) = f(x2) 
implies 
(ax2 + bx + c)( ax2 – bx + c) = ax4 + bx2 + c, so equating coefficients gives 
a = 1, b = c = 0; or a = b = c = 1; or a = 1, b = –1, c = 0; or a = c = 1, b = –2.

d Let x2 f(x) + f(1 – x) = 2x – x4 then f(1 – x) = 2x – x4 – x2 f(x). Interchanging 
x with 1 – x in x2 f(x) + f(1 – x) = 2x – x4 gives 
(1 –x)2 f(1 – x) + f(x) = 2(1 – x) – (1 – x)4. Substituting 
f(1 – x) = 2x – x4 – x2 f(x) and simplifying gives f(x) = 1 – x2.

Student activity 4.1

Only f(x) = x is a solution.

Student activity 4.2

a f(x – y) = a(x – y) = ax – ay = f(x) – f(y), graphically this corresponds to 
asserting that the vertical height from the horizontal axis to the graph of 
f(x) = ax at x – y is the same as the difference between the vertical height 
at x from the horizontal axis to the graph of f(x) and the vertical height at 
y from the horizontal axis to the graph of f(x)

b If f(x) = ax + b then f(x2 – x1) = a(x2 – x1) + b while f(x2) – f(x1) = a(x2 – x1). 
Thus in this case the functional value of the difference is the same as the 
difference of the functional values plus a vertical translation of b.

Student activity 4.3

a Let m and n be non-zero integers, then g(x + y) = g(x) + g(y) ⇒ 
 =  +  ⇒ m2 + mn + n2 = 0. If m and n are the same sign this is not 

possible, since all terms will be non-zero and positive, hence 
m2 + mn + n2 > 0. If m and n are of opposite sign then one of m2 or n2 is at 
least the same size as mn. As both m2 and n2 are non-zero this implies 
m2 + n2 – | mn | > 0, so again this is not possible. Hence 
g(x + y) ≠ g(x) + g(y) for integer x and y.

b g(x + y) = (x + y)g(xy)

Student activity 4.4

a f(x) = ax + b
b f(x) = cos(kx)
c f(x) = ax, f(x) = asin(kx)

d f(x + y) = 

e  = f(x) f(y)

1
m n+
--------------

1
m
-----

1
n
---

f x( ) f y( )+
1 f x( )f y( )–
------------------------------

af x2 y2+( )
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Student activity 4.5

The first part requires the extension of the definition of an exponent to rational 
values, then the functional equations hold by virtue of the index laws. For the 
second part any natural number counter-example suffices, since N ⊂ Q.

Student activity 4.6

The natural logarithm is defined by the (integral) functional equation 

loge(x) = , t > 0.

If f(x) =  this is clearly a function which has domain R+ and is 

undefined at x = 0. By the properties of a definite integral, f(1) = 0. 

By definition, f(ab) = 

Using the change of variable t = au, gives  = a, t = a gives u = 1 and t = ab 

gives u =b, hence f(ab) = +  = = f(a) + f(b). 

From this it can be readily deduced by letting b =  that f( ) = –f(a) and 

f( ) = f(b) – f(a). These functional equations characterise a logarithm function.

Student activity 4.7

Matrix multiplication is not, in general, commutative, that is, XY ≠ YX. By 
definition (XY)2 = XYXY. This will only be equal to X2Y2 if XY = YX since the 
middle product could then be written as XY resulting in XXYY = X2Y2. 

By definition of matrix inverse for multiplication, (XY)–1(XY) = I. The 
product (Y–1X–1)(XY) = Y–1 (X–1X) Y = Y–1 (I) Y = I. As inverse are unique, this 
gives (XY) –1 = Y–1X–1.

Student activity 4.8

The product theorem for differentiation can be established from first principles 
using the limit definition of a derivative. It also has a simple geometric 
representation, since products can be represented geometrically as areas of 
rectangles. For example, let y, u and v all be functions of the real variable x, 

1
t
--- td

1

x

∫

1
t
--- td

1

x

∫

1
t
--- td

1

ab

∫ 1
t
--- td

1

a

∫ 1
t
--- td

a

ab

∫+=

dt
du
------

1
t
--- td

1

a

∫ 1
u
--- ud

1

b

∫
1
a
---

1
a
---

b
a
---
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where y = uv. If a small change in the value of x is represented by δx, and 
consequent changes in y, u and v by δy, δu and δv respectively, then the change 
in the product function y can be identified with certain areas as shown below.

Using the diagram, it can be seen that:
y + δy  = (u + δu)(v + δv)

 = uv + uδv + vδu + δuδv
Since y = uv, this is equivalent to:

δy  = uδv + vδu + δuδv
Dividing through by δx gives:

 = u  + v  + δu 

taking the limit as δx → 0 yields the result:

 = u  + v 

(since δ u → 0 as δ x → 0, the limiting value of the term δu  is 0).

This is clearly not the same as the product of the derivatives of the original 
functions. A simple counter-example can be found by choosing u = f(x) = x2 
and v = g(x) = x3. 

Then  = 5x4 but .  = 2x3x2 = 6x3. 

By writing  as uv–1 and using the product and chain rules for 

differentiation the quotient rule can be obtained: 

uv

vδu

u

δu

uδv

v δv

δuδv

δy
δx
------

δv
δx
------

δu
δx
------

δv
δx
------

dy
dx
------

dv
dx
------

du
dx
------

δv
δx
------

d uv( )
dx

--------------
du
dx
------

dv
dx
------

u
v
---

d uv 1–( )
dx

------------------- ud v 1–( )
dx

--------------- v 1– du
dx
------+ u 1–

v2
------

dv
dx
------

1
v
---

du
dx
------+

vdu
dx
------ udv

dx
------–

v2
--------------------------= = =
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and this is clearly not the same as the quotient of the derivatives of the original 

functions. Again, u = f(x) = x2 and v = g(x) = x3 provide a counter-example as:

 and .

Student activity 4.9

Use tan(θ + ϕ) = , expand the right hand side using the identities 

for sin(θ + ϕ) and cos(θ + ϕ), then divide each term by cos(θ) cos(ϕ) to obtain: 

Let θ = ϕ in each of the original identities to obtain: 

sin(2θ) = 2sin(θ)cos(θ) cos(2θ) = cos2(θ) – sin2(θ) 

Let ϕ = –θ in each of the original identities, and use the fact that sine is an odd 
function, cosine is an even function, and hence tangent is an odd function to 
obtain:

sin(θ – ϕ) = sin(θ)cos(ϕ) – cos(θ)sin(ϕ)
cos(θ – ϕ) = cos(θ)cos(ϕ) + sin(θ)sin(ϕ)

Student activity 5.1

Assume the roll of tape is in the form of an annulus (a circular ring) with inside 
and outside radii of r and R respectively. If the wound tape has k layers (each 
treated as a circle), then these layers have a common thickness of d = . 
The length of each layer is then the circumference of the corresponding circle, 
which is 2π times its radius. The radii of the circles form an arithmetic 
sequence with first term r and constant difference d. The total length of the 
tape is then 2π × sum of the radii (a similar problem is to estimate the length of 
the track on an old-fashioned vinyl record).

Student activity 5.2

If the ball bounces to, say 80% of its previous height on a given bounce, then 
this forms a geometric sequence of values: 1, 1 × 0.8 = 0.8, 1 × 0.8× 0.8 = 0.64 
… and so on. As the common ratio r = 0.8 is such that | r | < 1, then the 
corresponding infinite geometric series converges with first term a = 1 and 

d uv 1–( )
dx

-------------------
1–

x2
------=

du
dx
------

dv
dx
------
------

2x

3x2
--------

2
x
---= =

θ ϕ+( )sin
θ ϕ+( )cos

--------------------------

θ ϕ+( )tan θ( )tan ϕ( )tan+
1 θ( )tan ϕ( )tan–
-------------------------------------------=

2 θ( )tan

1 tan2 θ( )–
---------------------------

θ ϕ–( )tan θ( )tan ϕ( )tan–
1 θ( )tan ϕ( )tan+
--------------------------------------------=

R r–
k

------------
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r = 0.8. The value if the limiting sum is , which in this case is  = 5 metres 
(in practice a ‘standard’ table-tennis ball often has a bounce factor of just less 
than 0.8 and bounces around 23 times before it stops).

Student activity 5.3

Continuing the geometric pattern develops a table of values:

Use of difference table gives a constant second difference of 1 so a quadratic 

polynomial function d(s) = as2 + bs + c will provide a suitable model, with 
2a = 1, so a = . Solving d(6) – d(4) = 7 for b gives b = . Then solving 

d(3) = 0 for c gives c = 0, so d(s) = .

Alternatively, from the geometry of the situation, a polygon of s sides also 
has s vertices, and each vertex will be joined to s – 3 other vertices by a diagonal 
(not itself or either of its neighbours). Since the product s × (s – 3) counts the 
diagonal from a vertex to any other vertex twice, the number of diagonals is 
half this, that is d(s) = s × (s – 3), which when expanded is algebraically 
equivalent to the earlier result (the geometric argument can also be adapted to 
deduce the form d(s) =  directly). 

Student activity 5.4

Let t(n) be the amount left to repay at the beginning of the nth quarter, and let 
p be the quarterly repayment required to pay off the loan over 10 years, with a 
rate of interest of 16% per annum. Then t(1) = 50 000 and 
t(n + 1) = 1.04t(n) – p. After 10 years, or 40 quarters, the amount left to pay 
should be zero, so t(41) = amount to pay at the beginning of the 
41st quarter = 0. Thus the value of p is found by solving the equation 

0 = 50 000 × 1.0440 – p × . Such equations can be readily solved 

using technology.

Student activity 5.5

The first few rows of Pascal’s triangle, that is, the coefficients of terms in the 
binomial expansion of (x + y)n, are, in left-justified format:

Sides s 3 4 5 6 7 8

Diagonals d 0 2 5 9 14 20

a
1 r–
-----------

1
0.2
-------

1
2
--- 3

2
---–

1
2
---s2 3

2
---s–

1
2
---

1
2
---s2 3

2
---s–

1.0440 1–
0.04

-----------------------
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If sums are formed along diagonals from top right to bottom left these 
generate the values of the Fibonacci sequence {1, 1, 2, 3, 5, 8, 13 …}. The 
diagonal whose sum generates the term F(6) = 8 is shown in bold. As the terms 

of the rows of Pascal’s triangle give values of , the following relationship 

also holds: F(6) = 8 = . 

The following diagram shows a nested series of rectangles with side lengths 
corresponding to the values of the first n terms of the Fibonacci sequence:

Student activity 5.6

Students should, in the first instance, experiment with values of the 
parameters within the ranges of those given in the text examples. They can 
then try other combinations of values.

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1

n

r⎝ ⎠
⎛ ⎞

5

0⎝ ⎠
⎛ ⎞ 4

1⎝ ⎠
⎛ ⎞ 3

2⎝ ⎠
⎛ ⎞+ +
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